【題目】如圖,在矩形紙片ABCD中,AB=14,BC=8,點E為邊BC上一點,且BE=5,將紙片沿過點E的一條直線l翻折,使點B落在直線CD上,若l與矩形的邊的另一個交點為F,則EF的長為

【答案】5
【解析】解:如圖,連接B′F,EB′,作FG⊥CD于G.設(shè)BF′=CG=x,

在Rt△EB′C中,∵EB′=EB=5,EC=3,
∴CB′= = =4,
在Rt△FGB′中,∵BF=FB′=x,F(xiàn)G=BC=8,F(xiàn)G=x﹣4,
∴x2=82+(x﹣4)2 ,
∴x=10.
∴BF=10,BE=5,
EF= =5 ,
所以答案是5
【考點精析】關(guān)于本題考查的翻折變換(折疊問題),需要了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8)將一張長方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.

(1)求∠1的度數(shù);

(2)求證:EFG是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在進(jìn)行二次根式的化簡與運算時,如遇到 , 這樣的式子,還需做進(jìn)一步的化簡:
= = .①
= = .②
= = = ﹣1.③
以上化簡的步驟叫做分母有理化.
還可以用以下方法化簡:
= = = = ﹣1.④
(1)請用不同的方法化簡
(I)參照③式化簡 =
(II)參照④式化簡
(2)化簡: + + +…+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點A的坐標(biāo)是(0,4),點B在第一象限,點P是x軸上的一個動點,連接AP,并把△AOP繞著點A按逆時針方向旋轉(zhuǎn),使邊AO與AB重合,得到△ABD.

(1)求B的坐標(biāo);
(2)當(dāng)點P運動到點(t,0)時,試用含t的式子表示點D的坐標(biāo);
(3)是否存在點P,使△OPD的面積等于 ,若存在,請求出符合條件的點P的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新世紀(jì)廣場進(jìn)貨員預(yù)測一種應(yīng)季襯衫能暢銷市場,就用8萬元購進(jìn)這種襯衫,面市后果然供不應(yīng)求,商場又用17.6萬元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了4元,商場銷售這種襯衫時每件定價都是58元,最后剩下的150件按八折銷售,很快售完,在這兩筆生意中,商場共贏利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為∠AOB內(nèi)一定點,M,N分別是射線OA,OB上一點,當(dāng)PMN周長最小時,∠OPM=50°,則∠AOB=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在彈性限度內(nèi),彈簧掛上物體后會伸長,測得一彈簧的長度y(cm)與所掛物體的質(zhì)量x(kg)之間的關(guān)系如下表,下列說法不正確的是(  )

x/kg

0

1

2

3

4

5

y/cm

20

20.5

21

21.5

22

22.5

A. xy都是變量,且x是自變量,yx的函數(shù)

B. 彈簧不掛重物時的長度為0 cm

C. 物體質(zhì)量每增加1 kg,彈簧長度y增加0.5 cm

D. 所掛物體質(zhì)量為7 kg時,彈簧長度為23.5 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1,O2,O3,…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2019秒時,點P的坐標(biāo)是(  )

A. (2019,0) B. (2019,-1) C. (2019,1) D. (2018,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組與方程
(1)解不等式組
(2)解方程: = ﹣3.

查看答案和解析>>

同步練習(xí)冊答案