【題目】如圖,正方形的邊在坐標(biāo)軸上,點的坐標(biāo)為.點從點出發(fā),以每秒1個單位長度的速度沿軸向點運動;點從點同時出發(fā),以相同的速度沿軸的正方向運動,規(guī)定點到達點時,點也停止運動,連接,過點作的垂線,與過點平行于軸的直線相交于點,軸交于點,連接,設(shè)點運動的時間為秒.

1)線段 (用含的式子表示),點的坐標(biāo)為 (用含的式子表示),的度數(shù)為

2)經(jīng)探究周長是一個定值,不會隨時間的變化而變化,請猜測周長的值并證明.

3)①當(dāng)為何值時,有

的面積能否等于周長的一半,若能求出此時的長度;若不能,請說明理由.

【答案】1,(tt),45°;(2POE周長是一個定值為10,理由見解析;(3)①當(dāng)t為(5-5)秒時,BP=BE;②能,PE的長度為2

【解析】

1)由勾股定理得出BP的長度;易證BAP≌△PQD,從而得到DQ=AP=t,從而可以求出∠PBD的度數(shù)和點D的坐標(biāo).
2)延長OA到點F,使得AF=CE,證明FAB≌△ECBSAS).得出FB=EB,∠FBA=EBC.再證明FBP≌△EBPSAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.即可得出答案;
3)①證明RtBAPRtBCEHL).得出AP=CE.則PO=EO=5-t.由等腰直角三角形的性質(zhì)得出PE=PO=5-t).延長OA到點F,使得AF=CE,連接BF,證明FAB≌△ECBSAS).得出FB=EB,∠FBA=EBC.證明FBP≌△EBPSAS).得出FP=EP.得出EP=FP=FA+AP=CE+AP.得出方程5-t=2t.解得t=5-5即可;
②由①得:當(dāng)BP=BE時,AP=CE.得出PO=EO.則POE的面積=OP2=5,解得OP=,得出PE=OP-=2即可.

解:(1)如圖1


由題可得:AP=OQ=1×t=t,
AO=PQ
∵四邊形OABC是正方形,
AO=AB=BC=OC,∠BAO=AOC=OCB=ABC=90°
BP=,
DPBP
∴∠BPD=90°
∴∠BPA=90°-DPQ=PDQ
AO=PQ,AO=AB
AB=PQ
BAPPQD中,

,
∴△BAP≌△PQDAAS).
AP=QDBP=PD
∵∠BPD=90°,BP=PD,


∴∠PBD=PDB=45°
AP=t,
DQ=t
∴點D坐標(biāo)為(t,t).
故答案為:,(tt),45°
2POE周長是一個定值為10,理由如下:
延長OA到點F,使得AF=CE,連接BF,如圖2所示.
FABECB中,


∴△FAB≌△ECBSAS).
FB=EB,∠FBA=EBC
∵∠EBP=45°,∠ABC=90°,
∴∠ABP+EBC=45°
∴∠FBP=FBA+ABP=EBC+ABP=45°
∴∠FBP=EBP
FBPEBP中,

,
∴△FBP≌△EBPSAS).
FP=EP
EP=FP=FA+AP=CE+AP
OP+PE+OE=OP+AP+CE+OE=AO+CO=5+5=10
∴△POE周長是定值,該定值為10
3)①若BP=BE,
RtBAPRtBCE中,


RtBAPRtBCEHL).
AP=CE
AP=t,
CE=t
PO=EO=5-t
∵∠POE=90°,
∴△POE是等腰直角三角形,
PE=PO=5-t).
延長OA到點F,使得AF=CE,連接BF,如圖2所示.
FABECB中,

,
∴△FAB≌△ECBSAS).
FB=EB,∠FBA=EBC
∵∠EBP=45°,∠ABC=90°
∴∠ABP+EBC=45°
∴∠FBP=FBA+ABP=EBC+ABP=45°
∴∠FBP=EBP
FBPEBP中,


∴△FBP≌△EBPSAS).
FP=EP
EP=FP=FA+AP=CE+AP
EP=t+t=2t
5-t=2t
解得:t=5-5,
∴當(dāng)t為(5-5)秒時,BP=BE
②△POE的面積能等于POE周長的一半;理由如下:
由①得:當(dāng)BP=BE時,AP=CE
AP=t,
CE=t
PO=EO
POE的面積=OP2=5
解得:OP=,
PE=OP==2;
POE的面積能等于POE周長的一半,此時PE的長度為2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,平分于點 ,的中點.

1)如圖,若的中點,,,,求;

2)如圖,為線段上一點,連接,滿足,.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個正比例函數(shù)的圖象經(jīng)過點(﹣2,1),則這個圖象也一定經(jīng)過點( )
A.(﹣ ,1)
B.(2,﹣1)
C.(﹣1,2)
D.(1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)舉行中國夢校園好聲音歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

1)根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測量工具和所學(xué)的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進行兩次測量,于是在陽光下,他們首先利用影長進行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內(nèi),木棒高CD=1.72米,AB⊥BF,CD⊥BF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)坐標(biāo)軸的單位長度為1cm,整數(shù)點P從原點O出發(fā),速度為1cm/s,且點P只能向上或向右運動,請回答下列問題:

1)填表:

2)當(dāng)P點從點O出發(fā)10秒,可得到的整數(shù)點的個數(shù)是 個.

3)當(dāng)P點從點O出發(fā) 秒時,可得到整數(shù)點(10 ,5).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:探究與應(yīng)用
(1)如圖1,在正方形ABCD中,AB=2,點E是邊AD的中點,請在對角線AC上找一點P,使得PE+PD的值最小,并求出這個最小值;(不用寫作法,保留作圖痕跡)

(2)如圖2,在矩形ABCD中,AB=6,BC=8,點E是邊BC的中點,若點P是邊AB上一動點,當(dāng)△PED的周長最小時,求BP的長度;
問題解決:

(3)某市規(guī)劃在市中心廣場內(nèi)修建一個矩形的活動中心,如圖3,矩形OABC是它的規(guī)劃圖紙,其中A為入口,已知OA=30,OC=20,點E是邊AB的中點,以頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系,點D是邊OA上一點,若將△ABD沿BD翻折,點A恰好落在邊BC上的點F處,在點F處設(shè)一出口,點M、N分別是邊OA、OC上的點,現(xiàn)規(guī)劃在點M、N、F、E四處各安置一個健身器材,并依次修建MN、NF、FE及EM四條小路,則是否存在點M、N,使得這四條小路的總長度最?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x滿足,求的值.

解:設(shè),,則,

所以== ==32-2×2=5

請運用上面的方法求解下面的問題:

1)若滿足,求 的值;

2)已知正方形ABCD的邊長為,EF分別是AD、DC上的點,且AE=1,CF=3,長方形EMFD的面積是35,求長方形EMFD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,E、F分別是正方形ABCD的邊CD、AD上的點,且CEDFAE、BF相交于點O,下列結(jié)論①AEBF;②AEBF;③AOOE;④SAOBS四邊形DEOF中,錯誤的有(

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案