【題目】如圖,已知BD為∠ABC的平分線,DE⊥BC于E,且AB+BC=2BE.
(1)求證:∠BAD+∠BCD=180°;
(2)若將條件“AB+BC=2BE”與結(jié)論“∠BAD+∠BCD=180°”互換,結(jié)論還成立嗎?請說明理由。
【答案】(1)見解析;(2)結(jié)論仍然成立,理由見解析;
【解析】
(1)首先過D作DF⊥BA,垂足為F,再根據(jù)條件AB+BC=2BE可得AB+EC=BE,再證明Rt△BFD≌Rt△BED,可得FB=BE,即AB+AF=BE,進而得到AF=EC,然后再證明△AFD≌△CED可得∠DCE=∠FAD,再根據(jù)∠BAD+∠FAD=180°,可得∠BAD+∠BCD=180°;
(2)過D作DF⊥BA,垂足為F,首先證明∠DCE=∠FAD,再證明△AFD≌△CED,可得AF=EC,然后證明Rt△BFD≌Rt△BED可得FB=BE,再根據(jù)線段的和差關(guān)系可得AB+BC=2BE.
(1)證明:過D作DF⊥BA,垂足為F,
∵AB+BC=2BE,
∴AB=BE+BEBC,
AB=BE+BEBEEC,
AB=BEEC,
AB+EC=BE,
∵BD為∠ABC的平分線,DE⊥BC,DF⊥BA,
∴DF=DE,
在Rt△BFD和Rt△BED中 ,
∴Rt△BFD≌Rt△BED(HL),
∴FB=BE,
∴AB+AF=BE,
又∵AB+EC=BE,
∴AF=EC,
在△AFD和△CED中 ,
∴△AFD≌△CED(SAS),
∴∠DCE=∠FAD,
∵∠BAD+∠FAD=180°,
∴∠BAD+∠BCD=180°;
(2)可以互換,結(jié)論仍然成立,理由如下:
過D作DF⊥BA,垂足為F,
∵∠BAD+∠FAD=180°,∠BAD+∠BCD=180°,
∴∠DCE=∠FAD,
∵BD為∠ABC的平分線,DE⊥BC,DF⊥BA,
∴DF=DE,
在△AFD和△CED中 ,
∴△AFD≌△CED(AAS),
∴AF=EC,
在Rt△BFD和Rt△BED中 ,
∴Rt△BFD≌Rt△BED(HL),
∴FB=BE,
∴AB+AF=BE,
AB=BEAF=BEEC=BE(BCBE)=BEBC+BE=2BEBC,
即:AB+BC=2BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC⊥AC,圓心O在AC上,點M與點C分別是AC與⊙O的交點,點D是MB與⊙O的交點,點P是AD延長線與BC的交點,且.
(1)求證:PD是⊙O的切線;
(2)若AD=12,AM=MC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD由四個相同的大長方形,四個相同的小長形以及一個小正方形組成,其中四個大長方形的長和寬分別是小長方形長和寬的2倍,若中間小正方形的面積為1,則大正方形ABCD的面積是( )
A.36B.25C.20D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,過AB的中點E作EC⊥OA,垂足為C,過點B作直線BD交CE的延長線于點D,使得DB=DE.
(1)求證:BD是⊙O的切線;
(2)若AB=12,DB=5,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,則∠MNA的度數(shù)是__.
(2)連接NB,若AB=8cm,△NBC的周長是14cm.
①求BC的長;
②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長值最?若存在,標(biāo)出點P的位置并求△PBC的周長最小值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)九年級的同學(xué)參加了一項“節(jié)能環(huán)!钡纳鐣{(diào)查活動,為了了解家庭用電的情況,他們隨機調(diào)查了某城區(qū)50 個家庭一年中生活用電的電費支出情況,并繪制了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖(費用取整數(shù),單位:元).
請你根據(jù)以上提供的信息,解答下列問題:
(1)頻數(shù)分布表中 ________________, ________________,
(2)補全頻數(shù)分布直方圖;
(3)這 個家庭電費支出的中位數(shù)落在________組內(nèi);
(4)若該城區(qū)有 萬個家庭,請你估計該城區(qū)有多少個一年電費支出低于 元的家庭?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】荊州市濱江公園旁的萬壽寶塔始建于明嘉靖年間,周邊風(fēng)景秀麗.現(xiàn)在塔底低于地面約7米,某校學(xué)生測得古塔的整體高度約為40米.其測量塔頂相對地面高度的過程如下:先在地面A處測得塔頂?shù)难鼋菫?/span>30°,再向古塔方向行進a米后到達(dá)B處,在B處測得塔頂?shù)难鼋菫?/span>45°(如圖所示),那么a的值約為_____米(≈1.73,結(jié)果精確到0.1).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com