【題目】如圖1,二次函數(shù)y=ax2+bx+3經(jīng)過點(diǎn)A(3,0),G(﹣1,0)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)M時(shí)拋物線在第一象限圖象上的一點(diǎn),求△ABM面積的最大值;
(3)拋物線的對(duì)稱軸交x軸于點(diǎn)P,過點(diǎn)E(0, )作x軸的平行線,交AB于點(diǎn)F,是否存在著點(diǎn)Q,使得△FEQ∽△BEP?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)拋物線的解析式為y=﹣x2+2x+3;(2)△ABM面積的最大值是;
(3)存在; Q的坐標(biāo)為(﹣,﹣)或(﹣, ).
【解析】試題分析:(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;
(2)根據(jù)平行于y軸的直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得ME的長,根據(jù)三角形的面積,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案.
(3)即可確定△BEP,根據(jù)相似三角形的判定定理即可求得點(diǎn)Q的坐標(biāo),解題時(shí)要注意答案的不唯一性.
試題解析:(1)將A、G點(diǎn)坐標(biāo)代入函數(shù)解析式,得 ,
解得 ,
拋物線的解析式為y=﹣x2+2x+3;
(2)作ME⊥x軸交AB于E點(diǎn),如圖1
當(dāng)x=0時(shí),y=3,即B點(diǎn)坐標(biāo)為(0,3)
直線AB的解析式為y=﹣x+3,
設(shè)M(n,﹣ n2+2n+3),E(n,﹣n+3),
ME═﹣n2+2n+3﹣(﹣n+3)=﹣n2+5n,
S△ABM=MExA=(﹣n2+5n)×3=﹣(n﹣)2+,
當(dāng)n=時(shí),△ABM面積的最大值是;
(3)存在;理由如下:
OE=,AP=2,OP=1,BE=3﹣=,
當(dāng)y=時(shí),﹣ x+3=,解得x=,即EF=
將△BEP繞點(diǎn)E順時(shí)針方向旋轉(zhuǎn)90°,得到△B'EC(如圖3),
∵OB⊥EF,
∴點(diǎn)B'在直線EF上,
∵C點(diǎn)橫坐標(biāo)絕對(duì)值等于EO長度,C點(diǎn)縱坐標(biāo)絕對(duì)值等于EO﹣PO長度,
∴C點(diǎn)坐標(biāo)為(﹣, ﹣1),
過F作FQ∥B'C,交EC于點(diǎn)Q,
則△FEQ∽△B'EC,
由 =,
可得Q的坐標(biāo)為(﹣,﹣);
根據(jù)對(duì)稱性可得,Q關(guān)于直線EF的對(duì)稱點(diǎn)Q'(﹣, )也符合條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列等式中,從左到右的變形為因式分解的是 ( )
A.x(a-b)=ax-bx
B.x2-y2+1=(x+y)(x-y)+1
C.ax2-9a=a(x+3)(x-3)
D.-6a2b=-2a2·3b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=,AC=5,tanA=2,D是BC中點(diǎn),點(diǎn)P是AC上一個(gè)動(dòng)點(diǎn),將△BPD沿PD折疊,折疊后的三角形與△PBC的重合部分面積恰好等于△BPD面積的一半,則AP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為(2,-1),那么點(diǎn)P的坐標(biāo)是( )
A.(-2,1)B.(1,-2)C.(-1,-2)D.(2,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(2,3),與y軸交于點(diǎn)B(0,4),與x軸交于點(diǎn)A.
(1)一次函數(shù)的表達(dá)式為;
(2)方程kx+b=0的解為;
(3)求該函數(shù)圖象與兩坐標(biāo)軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, .點(diǎn)從點(diǎn)出發(fā)沿方向以每秒2個(gè)單位長的速度向點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿方向以每秒1個(gè)單位長的速度向點(diǎn)勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)、運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)作于點(diǎn),連接、.
(1)求證: ;
(2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值;
如果不能,說明理由.
(3)當(dāng)為何值時(shí), 為直角三角形?直接寫出t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小韋隨機(jī)調(diào)查了若干市民租用共享單車后騎車時(shí)間(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)如果騎自行車的平均速度為12km/h,請(qǐng)估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com