如圖,直線MN交⊙O于A、B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)
D作DE⊥MN于E.

(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
解:(1)證明:連接OD,
∵OA=OD,∴∠OAD=∠ODA。
∵∠OAD=∠DAE,∴∠ODA=∠DAE!郉O∥MN。
∵DE⊥MN,∴∠ODE=∠DEM =90°,即OD⊥DE。
∵D在⊙O上,∴DE是⊙O的切線。
(2)連接CD,

∵∠AED=90°,DE=6,AE=3,∴AD= 。
∵AC是⊙O的直徑,∴∠ADC=∠AED =90°。
∵∠CAD=∠DAE,∴△ACD∽△ADE。 ∴,即
解得:AC=15。 
∴⊙O的半徑是7.5cm。
(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線。
(2)由勾股定理,可得AD的長(zhǎng),又由△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB是⊙O的直徑,若∠BAC=35°,則∠ADC=(       ).
A.35°B.55°C.70°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在⊙O中,半徑為5,∠AOB=60°,則弦長(zhǎng)AB=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(13,0),直線與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的半徑r=25,四邊形ABCD內(nèi)接圓⊙O,AC⊥BD于點(diǎn)H,P為CA延長(zhǎng)線上的一點(diǎn),且∠PDA=∠ABD.

(1)試判斷PD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若tan∠ADB=,PA=AH,求BD的長(zhǎng);
(3)在(2)的條件下,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,CD為⊙O的直徑,CD⊥AB,垂足為點(diǎn)F,AO⊥BC,垂足為點(diǎn)E,AO=1.

(1)求∠C的大。
(2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將邊長(zhǎng)為8cm的正方形ABCD的四邊沿直線l向右滾動(dòng)(不滑動(dòng)),當(dāng)正方形滾動(dòng)兩周時(shí),正方形的頂點(diǎn)A所經(jīng)過(guò)的路線的長(zhǎng)是     cm。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC中,AB=6,AC=8,BC=10,D、E分別是AC、AB的中點(diǎn),則以DE為直徑的圓與BC的位置關(guān)系是【   】

A.相交        B.相切       C.相離       D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O的直徑AB與弦CD垂直,且∠BAC=40°,則∠BOD=     

查看答案和解析>>

同步練習(xí)冊(cè)答案