【題目】已知,拋物線y=ax2+2ax+c與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)當(dāng)a>0時,如圖所示,若點(diǎn)D是第三象限方拋物線上的動點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫出自變量m的取值范圍;請問當(dāng)m為何值時,S有最大值?最大值是多少.
【答案】(1) y=﹣x2﹣2x+3或y=x2+2x﹣3;(2) S=﹣(m2+3m)(﹣3<m<0);當(dāng)m=﹣時,S取最大值,最大值為.
【解析】
(1)根據(jù)點(diǎn)B的坐標(biāo)及OC=3OB可得出點(diǎn)C的坐標(biāo),再根據(jù)點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式;
(2)過點(diǎn)D作DE⊥x軸,交AC于點(diǎn)E,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),進(jìn)而即可得出線段AC所在直線的解析式,由點(diǎn)D的橫坐標(biāo)可找出點(diǎn)D、E的坐標(biāo),再利用三角形的面積公式即可得出S與m的函數(shù)關(guān)系式,利用配方法可找出S的最大值.
(1)∵點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,
∴點(diǎn)C的坐標(biāo)為(0,3)或(0,﹣3),
將點(diǎn)B(1,0)、C(0,3)或(0,﹣3)代入y=ax2+2ax+c,
或
解得: 或,
∴拋物線的解析式為y=﹣x2﹣2x+3或y=x2+2x﹣3.
(2)過點(diǎn)D作DE⊥x軸,交AC于點(diǎn)E,如圖所示.
∵a>0,
∴拋物線的解析式為y=x2+2x﹣3,
∴點(diǎn)C的坐標(biāo)為(0,﹣3).
當(dāng)y=0時,有x2+2x﹣3=0,
解得:x1=﹣3,x2=1,
∴點(diǎn)A的坐標(biāo)為(﹣3,0),
利用待定系數(shù)法可求出線段AC所在直線的解析式為y=﹣x﹣3.
∵點(diǎn)D的橫坐標(biāo)為m,
∴點(diǎn)D的坐標(biāo)為(m,m2+2m﹣3),點(diǎn)E的坐標(biāo)為(m,﹣m﹣3),
∴DE=﹣m﹣3﹣(m2+2m﹣3)=﹣m2﹣3m,
∴S=DE×|﹣3﹣0|=﹣(m2+3m)(﹣3<m<0).
∵﹣<0,且S=﹣(m2+3m)=﹣(m+)2+,
∴當(dāng)m=﹣時,S取最大值,最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(4,0),B(0,2),C(4,4).已知四邊形ABCD為菱形,其中AB與BC為一組鄰邊.
(1)請在圖中作出菱形ABCD,并求出菱形ABCD的面積;
(2)過點(diǎn)A的直線l:y=x+b與線段CD相交于點(diǎn)E,請在圖中作出直線l的圖象,并求出△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在坐標(biāo)系中畫出函數(shù)的圖象,
判斷點(diǎn)是否在圖象上?為什么?
已知點(diǎn)在該函數(shù)圖象上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B(4,0),C
(0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動點(diǎn).
(1) 求這個二次函數(shù)的解析式;
(2) 是否存在點(diǎn) P,使△POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請說明理由;
(3) 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 S△DBC=S△ABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E分別在等邊△ABC的邊AB,BC上,將△BDE沿直線DE翻折,使點(diǎn)B落在B1處.若∠ADB1=70°,則∠CEB1=___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,點(diǎn)在所在的直線上,點(diǎn)在射線上,且,連接.
(1)如圖①,若,,求的度數(shù);
(2)如圖②,若,,求的度數(shù);
(3)當(dāng)點(diǎn)在直線上(不與點(diǎn)、重合)運(yùn)動時,試探究與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點(diǎn)為D點(diǎn).
(1)求此拋物線解析式;
(2)如圖1,點(diǎn)P為拋物線上的一個動點(diǎn),且在對稱軸右側(cè),若△ADP面積為3,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,PA交對稱軸于點(diǎn)E,如圖2,過E點(diǎn)的任一條直線與拋物線交于M,N兩點(diǎn),直線MD交直線y=﹣3于點(diǎn)F,連結(jié)NF,求證:NF∥y軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,△ABC的頂點(diǎn)都在格點(diǎn)上,請完成下列任務(wù):
(1)將△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C;
(2)求線段AC旋轉(zhuǎn)到A1C的過程中,所掃過的圖形的面積;
(3)以點(diǎn)O為位似中心,位似比為2,將△A1B1C放大得到△A2B2C2(在網(wǎng)格之內(nèi)畫圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,中,于,且.
(1)試說明是等腰三角形;
(2)已知,如圖2,動點(diǎn)從點(diǎn)出發(fā)以每秒的速度沿線段向點(diǎn)運(yùn)動,同時動點(diǎn)從點(diǎn)出發(fā)以相同速度沿線段向點(diǎn)運(yùn)動,設(shè)點(diǎn)運(yùn)動的時間為(秒).
①若的邊于平行,求的值;
②若點(diǎn)是邊的中點(diǎn),問在點(diǎn)運(yùn)動的過程中,能否成為等腰三角形?若能,求出的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com