【題目】如圖①,拋物線過、兩點(diǎn),交軸于點(diǎn),連接.
(1)求該拋物線的表達(dá)式和對稱軸;
(2)點(diǎn)是拋物線對稱軸上一動點(diǎn),當(dāng)是以為直角邊的直角三角形時,求所有符合條件的點(diǎn)的坐標(biāo);
(3)如圖②,將拋物線在上方的圖象沿折疊后與軸交與點(diǎn),求點(diǎn)的坐標(biāo).
【答案】(1),對稱軸為;(2)點(diǎn)的坐標(biāo)為或;(3)
【解析】
(1)根據(jù)拋物線y=2x2+bx+c過A(1,0)、B(3,0)兩點(diǎn),可以求得該拋物線的解析式,然后將解析式化為頂點(diǎn)式即可得到該拋物線的對稱軸;
(2)根據(jù)題意,可知分兩種情況:和,然后利用勾股定理可求得點(diǎn)D的坐標(biāo);
(3)在線段上方的拋物線圖象取點(diǎn)的對稱點(diǎn),過點(diǎn)作軸的平行線交直線于點(diǎn),求出,求出直線BC的解析式,設(shè)點(diǎn)的坐標(biāo)為,得到點(diǎn)的坐標(biāo)為,得到,,利用列出方程求出n,得到 ,再求出OE,即可得解.
(1)將、代入得:
,
解得:
∴拋物線的解析式為.
∴對稱軸為
(2)當(dāng)時,,即點(diǎn)的坐標(biāo)為
設(shè)點(diǎn)坐標(biāo)為
∴;
①當(dāng)時,
∴
解得:
∴此時點(diǎn)的坐標(biāo)為;
②當(dāng)時,
∴
解得:
∴此時點(diǎn)的坐標(biāo)為;
綜上所述:點(diǎn)的坐標(biāo)為或;
(3)在線段上方的拋物線圖象取點(diǎn)的對稱點(diǎn),過點(diǎn)作軸的平行線交直線于點(diǎn).
∴設(shè)直線的表達(dá)式為
將、代入得:
,解得:
∴直線的表達(dá)式為
∵翻折
∴,
∵軸
∴
∴
∴
設(shè)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為
∴
∵
∴
解得:(舍去),
∴
∴
∵
∴
∴點(diǎn)的坐標(biāo)為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠(yuǎn)處有一棟大樓,某人在樓底C處測得塔頂B的仰角為45°,在樓頂D處測得塔頂B的仰角為39°.
(1)求大樓與電視塔之間的距離AC;
(2)求大樓的高度CD(精確到1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,0)、B(0,3),一次函數(shù)與坐標(biāo)軸分別交于C、D兩點(diǎn),G為CD上一點(diǎn),且DG:CG=1:2,連接BG,當(dāng)BG平分∠ABO時,則b的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一放假期間,甲、乙、丙三位同學(xué)到某影城看電影,影城有A,B兩部不同電影,甲、乙、丙3人分別從中任選一部觀看,每部被選中的可能性相同.
(1)甲同學(xué)選擇“A部電影”的概率為 ;
(2)用畫樹狀圖的方法求甲、乙、丙3人選擇同一部電影的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開時,雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時,可以通過閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的頂點(diǎn)的坐標(biāo)分別是,,頂點(diǎn)在雙曲線上,邊交軸于點(diǎn),且的面積是面積的8倍,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,,直線l過A、B兩點(diǎn),點(diǎn)D為線段AB上一動點(diǎn),過點(diǎn)D作軸于點(diǎn)C,交拋物線于點(diǎn)E.
(1)求拋物線的解析式;
(2)若拋物線與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請寫出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點(diǎn)E的坐標(biāo);如果不存在,請說明理由.
(3)連接BE,是否存在點(diǎn)D,使得和相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,AB=BC,以AB為直徑的圓交AC于點(diǎn)D,過點(diǎn)D的⊙O的切線交BC于點(diǎn)E,若CD=5,CE=4,則⊙O的半徑是( )
A.3B.4C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com