請(qǐng)閱讀下列材料:
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等.即如圖1,若弦AB、CD交于點(diǎn)P,則PA•PB=PC•PD.請(qǐng)你根據(jù)以上材料,解決下列問(wèn)題.

已知⊙O的半徑為2,P是⊙O內(nèi)一點(diǎn),且OP=1,過(guò)點(diǎn)P任作-弦AC,過(guò)A、C兩點(diǎn)分別作⊙O的切線m和n,作PQ⊥m于點(diǎn)Q,PR⊥n于點(diǎn)R.(如圖2)
(1)若AC恰經(jīng)過(guò)圓心O,請(qǐng)你在圖3中畫出符合題意的圖形,并計(jì)算:數(shù)學(xué)公式的值;
(2)若OP⊥AC,請(qǐng)你在圖4中畫出符合題意的圖形,并計(jì)算:數(shù)學(xué)公式的值;
(3)若AC是過(guò)點(diǎn)P的任一弦(圖2),請(qǐng)你結(jié)合(1)(2)的結(jié)論,猜想:數(shù)學(xué)公式的值,并給出證明.

解:(1)AC過(guò)圓心O,且m,n分別切⊙O于點(diǎn)A,C,
∴AC⊥m于點(diǎn)A,AC⊥n于點(diǎn)C.
∴Q與A重合,R與C重合.
∵OP=1,AC=4,
+=1+=

(2)連接OA,
∵OP⊥AC于點(diǎn)P,且OP=1,OA=2,
∴∠OAP=30°.
∴AP=
∵OA⊥直線m,PQ⊥直線m,
∴OA∥PQ,∠PQA=90°.
∴∠APQ=∠OAP=30°.
∴AP=
∵OA⊥直線m,PQ⊥F直線m,
∴OA∥PQ,∠PQA=90°.
∴∠APQ=∠OAP=30°.
在Rt△AQP中,PQ=,同理,PR=


(3)猜想
證明:過(guò)點(diǎn)A作直徑交⊙O于點(diǎn)E,連接EC,
∴∠ECA=90°.
∵AE⊥直線m,PQ⊥直線,
∴AE∥PQ且∠PQA=90°.
∴∠EAC=∠APQ.
∴△AEC∽△PAQ.

同理可得:
①+②,得:
+=+
=
==
過(guò)P作直徑交⊙O于M,N,
根據(jù)閱讀材料可知:AP•PC=PM•PN=3,
=
分析:(1)由于AC過(guò)圓心,那么Q,A重合,R,C重合,可根據(jù)OP和半徑的長(zhǎng)求出PA,PC的長(zhǎng),即PQ,PR的長(zhǎng).由此可得出所求的結(jié)論;
(2)連接OA,不難得出OA∥PQ,那么可得出∠OAP=∠APQ,可先在直角三角形OAP中,求出∠OAP的度數(shù)和AP的長(zhǎng),進(jìn)而可在直角三角形APQ中求出PQ的長(zhǎng),同理可求出PR的長(zhǎng),即可求出所求的結(jié)論;(本題還可通過(guò)證△ADP和△PAQ相似,得出的值,同理可連接CD得出的值)
(3)本題要通過(guò)相似三角形來(lái)求解.過(guò)點(diǎn)A作直徑交⊙O于點(diǎn)E,連接EC,通過(guò)相似三角形△AEC∽△PAQ,得出關(guān)于AC,PQ,AE,AP的比例關(guān)系式,同理可求出AC,PR,AE,PC的比例關(guān)系式,兩式聯(lián)立可得出的表達(dá)式,然后根據(jù)相交弦定理即可證得所求的結(jié)論.
(第二種證法和(2)的第二種求法完全相同.)
點(diǎn)評(píng):本題主要考查了相似三角形和相交弦定理的應(yīng)用,根據(jù)相似三角形得出與所求相關(guān)的線段成比例是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等.即如圖1,若弦AB、CD交于點(diǎn)P,則PA•PB=PC•PD.請(qǐng)你根據(jù)以上材料,解決下列問(wèn)題.
精英家教網(wǎng)精英家教網(wǎng)
已知⊙O的半徑為2,P是⊙O內(nèi)一點(diǎn),且OP=1,過(guò)點(diǎn)P任作-弦AC,過(guò)A、C兩點(diǎn)分別作⊙O的切線m和n,作PQ⊥m于點(diǎn)Q,PR⊥n于點(diǎn)R.(如圖2)
(1)若AC恰經(jīng)過(guò)圓心O,請(qǐng)你在圖3中畫出符合題意的圖形,并計(jì)算:
1
PQ
+
1
PR
的值;
(2)若OP⊥AC,請(qǐng)你在圖4中畫出符合題意的圖形,并計(jì)算:
1
PQ
+
1
PR
的值;
(3)若AC是過(guò)點(diǎn)P的任一弦(圖2),請(qǐng)你結(jié)合(1)(2)的結(jié)論,猜想:
1
PQ
+
1
PR
的值,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京模擬題 題型:解答題

請(qǐng)閱讀下列材料:
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等,即如圖(1),若弦AB、CD交于點(diǎn)P則PA·PB=PC·PD,請(qǐng)你根據(jù)以上材料,解決下列問(wèn)題,已知⊙O的半徑為2,P是⊙O內(nèi)一點(diǎn),且OP=1,過(guò)點(diǎn)P任作一弦AC,過(guò)A、C兩點(diǎn)分別作圓O的切線m和n,作PQ⊥m于點(diǎn)Q,PR⊥n于點(diǎn)R。(如圖(2))
(1)若AC恰經(jīng)過(guò)圓心O,請(qǐng)你在圖(3)中畫出符合題意的圖形,并計(jì)算:的值;
(2)若OP⊥AC,請(qǐng)你在圖(4)中畫出符合題意的圖形,并計(jì)算:的值;
(3)若AC是過(guò)點(diǎn)P的任一弦(圖(2)),請(qǐng)你結(jié)合(1)(2)的結(jié)論,猜想:的值,并給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市人大附中九年級(jí)(上)數(shù)學(xué)統(tǒng)練試卷(2)(解析版) 題型:解答題

請(qǐng)閱讀下列材料:
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等.即如圖1,若弦AB、CD交于點(diǎn)P,則PA•PB=PC•PD.請(qǐng)你根據(jù)以上材料,解決下列問(wèn)題.

已知⊙O的半徑為2,P是⊙O內(nèi)一點(diǎn),且OP=1,過(guò)點(diǎn)P任作-弦AC,過(guò)A、C兩點(diǎn)分別作⊙O的切線m和n,作PQ⊥m于點(diǎn)Q,PR⊥n于點(diǎn)R.(如圖2)
(1)若AC恰經(jīng)過(guò)圓心O,請(qǐng)你在圖3中畫出符合題意的圖形,并計(jì)算:的值;
(2)若OP⊥AC,請(qǐng)你在圖4中畫出符合題意的圖形,并計(jì)算:的值;
(3)若AC是過(guò)點(diǎn)P的任一弦(圖2),請(qǐng)你結(jié)合(1)(2)的結(jié)論,猜想:的值,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市東城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•東城區(qū)一模)請(qǐng)閱讀下列材料:
圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等.即如圖1,若弦AB、CD交于點(diǎn)P,則PA•PB=PC•PD.請(qǐng)你根據(jù)以上材料,解決下列問(wèn)題.

已知⊙O的半徑為2,P是⊙O內(nèi)一點(diǎn),且OP=1,過(guò)點(diǎn)P任作-弦AC,過(guò)A、C兩點(diǎn)分別作⊙O的切線m和n,作PQ⊥m于點(diǎn)Q,PR⊥n于點(diǎn)R.(如圖2)
(1)若AC恰經(jīng)過(guò)圓心O,請(qǐng)你在圖3中畫出符合題意的圖形,并計(jì)算:的值;
(2)若OP⊥AC,請(qǐng)你在圖4中畫出符合題意的圖形,并計(jì)算:的值;
(3)若AC是過(guò)點(diǎn)P的任一弦(圖2),請(qǐng)你結(jié)合(1)(2)的結(jié)論,猜想:的值,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案