【題目】以墻(長度不限)為一邊,再用長為13m的鐵絲為另外三邊,圍成面積為20的長方形.已知長大于寬,則長方形的長、寬分別是( )
A. 5m,4m或9m,2 m B. 9m,2m C. 10m,1.5m D. 8m,2.5m或5m,4m
【答案】D
【解析】
先根據(jù)題意設(shè)長方形的長為x米,如果以墻為長方形的長邊,長方形的寬為(13-x)米,利用面積20作為相等關(guān)系列一元二次方程,求解即可.
設(shè)長方形的長為x米,如果以墻為長方形的長邊,長方形的寬為(13-x)米,
則(13-x)x=20,
(13-x)x=40,
x2-13x+40=0,
(x-5)(x-8)=0,
x-5=0或x-8=0,
x=5或x=8,
當(dāng)x=5米時,長方形的寬=20÷5=4米<長方形的長,
當(dāng)x=8米時,長方形的寬=20÷8=2.5米<長方形的長.
所以長方形的長是5米或8米,寬對應(yīng)的是4米或2.5米.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=m(x+3)2+n與y=m(x﹣2)2+n+1交于點(diǎn)A.過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B、C(點(diǎn)B在點(diǎn)C左側(cè)),則線段BC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件50元.當(dāng)售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設(shè)每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=5x+5交x軸于點(diǎn)A,交y軸于點(diǎn)C,過A,C兩點(diǎn)的二次函數(shù)y=ax2+4x+c的圖象交x軸于另一點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)連接BC,點(diǎn)N是線段BC上的動點(diǎn),作ND⊥x軸交二次函數(shù)的圖象于點(diǎn)D,求線段ND長度的最大值;
(3)若點(diǎn)H為二次函數(shù)y=ax2+4x+c圖象的頂點(diǎn),點(diǎn)M(4,m)是該二次函數(shù)圖象上一點(diǎn),在x軸,y軸上分別找點(diǎn)F,E,使四邊形HEFM的周長最小,求出點(diǎn)F、E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上順次有A、B、C三地,甲車從B地出發(fā)往A地勻速行駛,到達(dá)A地后停止.在甲車出發(fā)的同時,乙車也從B地出發(fā)往A地勻速行駛,到達(dá)A地停留1小時后,調(diào)頭按原速向C地行駛.若AB兩地相距300千米,在兩車行駛的過程中,甲、乙兩車之間的距離y(千米)與乙車行駛時間x(小時)之間的函數(shù)圖象如圖所示,則在兩車出發(fā)后經(jīng)過_____小時相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊△ABC內(nèi)一點(diǎn),且PA=6,PC=8,PB=10,若△APB繞點(diǎn)A逆時針旋轉(zhuǎn)60°后,得到△AP′C,則∠APC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.
(1)求拋物線的表達(dá)式;
(2)拋物線的對稱軸上有一動點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動點(diǎn)M,使△ABM的面積等于△ABC的面積,求M點(diǎn)坐標(biāo).
(4)拋物線的對稱軸上是否存在動點(diǎn)Q,使得△BCQ為等腰三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)y= 的圖象上有一動點(diǎn)A,連接AO并延長交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿足AC=BC,當(dāng)點(diǎn)A運(yùn)動時,點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動,若tan∠CAB=2,則k的值為( )
A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點(diǎn)A(1,2).直線l⊥x軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com