【題目】如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,點(diǎn)M在PB上,且OM∥AP,MN⊥AP,垂足為N.
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.

【答案】
(1)證明:如圖,連接OA,則OA⊥AP,

∵M(jìn)N⊥AP,

∴MN∥OA,

∵OM∥AP,

∴四邊形ANMO是矩形,

∴OM=AN


(2)解:連接OB,則OB⊥BP

∵OA=MN,OA=OB,OM∥AP.

∴OB=MN,∠OMB=∠NPM.

∴Rt△OBM≌Rt△MNP,

∴OM=MP.

設(shè)OM=x,則NP=9﹣x,

在Rt△MNP中,有x2=32+(9﹣x)2

∴x=5,即OM=5.


【解析】(1)連接OA,由切線的性質(zhì)可知OA⊥AP,再由MN⊥AP可知四邊形ANMO是矩形,故可得出結(jié)論;(2)連接OB,則OB⊥BP由OA=MN,OA=OB,OM∥AP.可知OB=MN,∠OMB=∠NPM.故可得出Rt△OBM≌△MNP,OM=MP. 設(shè)OM=x,則NP=9﹣x,在Rt△MNP利用勾股定理即可求出x的值,進(jìn)而得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長與AD的延長線相較于點(diǎn)F

1)求證:四邊形BDFC是平行四邊形;

2)若△BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,點(diǎn)E是AD上的一點(diǎn),有AE=4,BE的垂直平分線交BC的延長線于點(diǎn)F,連結(jié)EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市政府決定對市直機(jī)關(guān)500戶家庭的用水情況作一次調(diào)查,市政府調(diào)查小組隨機(jī)抽查了其中的100戶家庭一年的月平均用水量(單位:噸),并將調(diào)查結(jié)果制成了如圖所示的條形統(tǒng)計圖.

(1)請將條形統(tǒng)計圖補(bǔ)充完整;

(2)求這100個樣本數(shù)據(jù)的平均數(shù),眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個有45°角的三角板的直角頂點(diǎn)放在一張寬為3cm的紙帶邊沿上,另一個頂

點(diǎn)在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算中,正確的是(
A.32=﹣6
B. =±6
C.(﹣x)2÷(﹣x)=x
D.(﹣2x23=﹣8x6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在梯形ABCD中,AB∥DC,BD⊥AD,AD=DC=BC=2cm,那么梯形ABCD的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡計算
(1)計算: ﹣( ﹣1)0﹣2cos30°
(2)解方程: + =2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算中,正確的是(
A.a0=1
B.a1=﹣a
C.a3a2=a5
D.2a2+3a3=5a5

查看答案和解析>>

同步練習(xí)冊答案