計算°+(-1)2004
【答案】分析:本題涉及特殊三角函數(shù)值、負指數(shù)冪2個考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
解答:解:原式=4-4×+1=3.
點評:本題考查實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、二次根式、特殊三角函數(shù)值等考點的運算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:第6章《二次函數(shù)》中考題集(27):6.4 二次函數(shù)的應用(解析版) 題型:解答題

小明代表班級參加校運會的鉛球項目,他想:“怎樣才能將鉛球推得更遠呢”,于是找來小剛做了如下的探索:小明手摯鉛球在控制每次推出時用力相同的條件下,分別沿與水平線成30°、45°、60°方向推了三次.鉛球推出后沿拋物線形運動.如圖,小明推鉛球時的出手點距地面2m,以鉛球出手點所在豎直方向為y軸、地平線為x軸建立直角坐標系,分別得到的有關數(shù)據(jù)如下表:
鉛球的方向與水平線的夾角304560
鉛球運行所得到的拋物線解析式 y1=-0.06(x-3)2+2.5 y2=
______(x-4)2+3.6
 y3=-0.22(x-3)2+4
估測鉛球在最高點的坐標 P1(3,2.5) P2(4,3.6) P3(3,4)
鉛球落點到小明站立處的水平距離 9.5m 

______m
 7.3m
(1)請你求出表格中兩橫線上的數(shù)據(jù),寫出計算過程,并將結(jié)果填入表格中的橫線上;
(2)請根據(jù)以上數(shù)據(jù),對如何將鉛球推得更遠提出你的建議.

查看答案和解析>>

科目:初中數(shù)學 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(25):20.5 二次函數(shù)的一些應用(解析版) 題型:解答題

小明代表班級參加校運會的鉛球項目,他想:“怎樣才能將鉛球推得更遠呢”,于是找來小剛做了如下的探索:小明手摯鉛球在控制每次推出時用力相同的條件下,分別沿與水平線成30°、45°、60°方向推了三次.鉛球推出后沿拋物線形運動.如圖,小明推鉛球時的出手點距地面2m,以鉛球出手點所在豎直方向為y軸、地平線為x軸建立直角坐標系,分別得到的有關數(shù)據(jù)如下表:
鉛球的方向與水平線的夾角304560
鉛球運行所得到的拋物線解析式 y1=-0.06(x-3)2+2.5 y2=
______(x-4)2+3.6
 y3=-0.22(x-3)2+4
估測鉛球在最高點的坐標 P1(3,2.5) P2(4,3.6) P3(3,4)
鉛球落點到小明站立處的水平距離 9.5m 

______m
 7.3m
(1)請你求出表格中兩橫線上的數(shù)據(jù),寫出計算過程,并將結(jié)果填入表格中的橫線上;
(2)請根據(jù)以上數(shù)據(jù),對如何將鉛球推得更遠提出你的建議.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年江蘇省無錫市新區(qū)中考數(shù)學模擬試卷(解析版) 題型:解答題

(1)在足球比賽中,當守門員遠離球門時,進攻隊員常常使用“吊射”的戰(zhàn)術(把球高高地挑過守門員的頭頂,射入球門).一位球員在離對方球門30米的M處起腳吊射,假如球飛行的路線是一條拋物線,在離球門14米時,足球到達最大高度米,如圖1,以球門底部為坐標原點建立坐標系,球門PQ的高度為2.44米,試通過計算說明,球是否會進入球門?
(2)在(1)中,若守門員站在距球門2米遠處,而守門員跳起后最多能摸到2.75米高處,他能否在空中截住這次吊射?
(3)如圖2,在另一次地面進攻中,假如守門員站在離球門中央2米遠的A處防守,進攻隊員在離球門中央12米的B處,以120千米/小時的球速起腳射門,射向球門的立柱C,球門的寬度CD為7.2米,而守門員防守的最遠水平距離S(米)與時間t(秒)之間的函數(shù)關系式為S=10t,問守門員能否擋住這次射門?
(4)在(3)的條件下,∠EAG區(qū)域為守門員的截球區(qū)域,試估計∠EAG的最大值(精確到0.1°).

查看答案和解析>>

科目:初中數(shù)學 來源:2012年《海峽教育報》初中數(shù)學綜合練習(三)(解析版) 題型:解答題

如圖,直角三角形ABC中,∠ABC=90°,B(2,0),經(jīng)過A、B、C三點的拋物線y=x2-2x+k與y軸交于點A,與x軸的另一個交點為D.
(1)求此拋物線的解析式;
(2)⊙B是以點B為圓心,OB長為半徑的圓,以點D為圓心的⊙D與直線BC相切,請你通過計算說明:⊙B與⊙D的位置關系;
(3)在直線AD下方的拋物線上是否存在一點P,使四邊形APDC的面積最大?若存在,請你求出點P的坐標和四邊形APDC面積的最大值;若不存在,請你說明理由.

查看答案和解析>>

同步練習冊答案