【題目】(1)如圖,在在△ABC中,已知∠BAC=900,AB=AC,點(diǎn)DBC上,且BD=BA,點(diǎn)EBC的延長(zhǎng)線上,CE=CA,求∠DAE的度數(shù);

(2)如果把(1)中的“AB=AC”條件去掉,其余條件不變,那么∠DAE的度數(shù)改變嗎?為什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余條件不變,試探究∠DAE∠BAC的數(shù)量關(guān)系式,試證明.

【答案】(1)450;(2)不改變;(3)∠DAE=∠BAC.

【解析】

(1)要求∠DAE,必先求∠BAD和∠CAE,由∠BAC=90°,AB=AC,可求∠B=ACB=45°,又因?yàn)?/span>BD=BA,可求∠BAD=BDA=67.5°,再由CE=CA,可求∠CAE=E=22.5°,所以∠DAE=BAE-BAD=112.5°-67.5°=45°;
(2)先設(shè)∠CAE=x,由已知CA=CE可求∠ACB=CAE+E=2x,B=90°-2x,又因?yàn)?/span>BD=BA,所以∠BAD=BDA=x+45°,再根據(jù)三角形的內(nèi)角和是180°,可求∠BAE=90°+x,即∠DAE=BAE-BAD=(90°+x)-(x+45°)=45度;
(3)可設(shè)∠CAE=x,BAD=y,則∠B=180°-2y,E=CAE=x,所以∠BAE=180°-B-E=2y-x,BAC=BAE-CAE=2y-x-x=2y-2x,即∠DAE=BAC.

(1)AB=AC,BAC=

∴∠B=ACB=,

BD=BA,

∴∠BAD=BDA=(180B)=

CE=CA,

∴∠CAE=E=ACB=,

ABE,BAE=180BE=

∴∠DAE=BAEBAD==;

(2)不改變.

設(shè)∠CAE=x,

CA=CE,

∴∠E=CAE=x,

∴∠ACB=CAE+E=2x,

ABC,BAC=,

∴∠B=ACB=2x,

BD=BA,

∴∠BAD=BDA= (180B)=x+

ABE,BAE=BE,=(2x)x=+x,

∴∠DAE=BAEBAD,=(+x)(x+)=;

(3)DAE=BAC.

理由:設(shè)∠CAE=x,BAD=y,

則∠B=2y,E=CAE=x,

∴∠BAE=BE=2yx,

∴∠DAE=BAEBAD=2yxy=yx,

BAC=BAECAE=2yxx=2y2x,

∴∠DAE=BAC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘漁船正自西向東航行追趕魚(yú)群,在A處望見(jiàn)島C在船的北偏東60°方向,前進(jìn)20海里到達(dá)B處,此時(shí)望見(jiàn)島C在船的北偏東30°方向,以島C為中心的12海里內(nèi)為軍事演習(xí)的危險(xiǎn)區(qū).請(qǐng)通過(guò)計(jì)算說(shuō)明:如果這艘漁船繼續(xù)向東追趕魚(yú)群是否有進(jìn)入危險(xiǎn)區(qū)的可能.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行全體學(xué)生漢字聽(tīng)寫(xiě)比賽,每位學(xué)生聽(tīng)寫(xiě)漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,繪制成如下的圖表.

組別

正確字?jǐn)?shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根據(jù)以上信息完成下列問(wèn)題:

(1)統(tǒng)計(jì)表中的m=   ,n=   ,并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)扇形統(tǒng)計(jì)圖中“C所對(duì)應(yīng)的圓心角的度數(shù)是   ;

(3)已知該校共有900名學(xué)生,如果聽(tīng)寫(xiě)正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽(tīng)寫(xiě)比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰與等腰,,,,連接相交于點(diǎn),交于點(diǎn),交與點(diǎn).下列結(jié)論:①;②;③平分;④若,則.其中一定正確的結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某海爾專(zhuān)賣(mài)店春節(jié)期間,銷(xiāo)售10臺(tái)型號(hào)洗衣機(jī)和20臺(tái)型號(hào)洗衣機(jī)的利潤(rùn)為4000元,銷(xiāo)售20臺(tái)型號(hào)洗衣機(jī)和10臺(tái)型號(hào)洗衣機(jī)的利潤(rùn)為3500元.

(1)求每臺(tái)型號(hào)洗衣機(jī)和型號(hào)洗衣機(jī)的銷(xiāo)售利潤(rùn);

(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的洗衣機(jī)共100臺(tái),其中型號(hào)洗衣機(jī)的進(jìn)貨量不超過(guò)型號(hào)洗衣機(jī)的進(jìn)貨量的2倍,問(wèn)當(dāng)購(gòu)進(jìn)型號(hào)洗衣機(jī)多少臺(tái)時(shí),銷(xiāo)售這100臺(tái)洗衣機(jī)的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,以大于EF長(zhǎng)為半徑作圓弧,兩條弧交于點(diǎn)G,作射線AGCD于點(diǎn)H,若∠C=120°,則∠AHD=( 。

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)從A地開(kāi)往B地,甲車(chē)比乙車(chē)早出發(fā)2小時(shí),并且在途中休息了0.5小時(shí),休息前后速度相同,如圖是甲、乙兩車(chē)行駛的距離ykm)與時(shí)間xh)的函數(shù)圖象.解答下列問(wèn)題:

1)圖中a的值為;

2)當(dāng)x1.5h)時(shí),求甲車(chē)行駛路程ykm)與時(shí)間xh)的函數(shù)關(guān)系式;

3)當(dāng)甲車(chē)行駛多長(zhǎng)時(shí)間后,兩車(chē)恰好相距40km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在 ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過(guò)點(diǎn)GEF BCABE,交ACF,過(guò)點(diǎn)GGD ACD,下列四個(gè)結(jié)論:①EF = BE+CF;②∠BGC= 90 °+A;③點(diǎn)G ABC各邊的距離相等;④設(shè)GD =m,AE + AF =n,則SAEF=mn.其中正確的結(jié)論有(

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求證:相似三角形對(duì)應(yīng)邊上的中線之比等于相似比.

要求:①根據(jù)給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫(xiě)作法,保留作圖痕跡;

②在已有的圖形上畫(huà)出一組對(duì)應(yīng)中線,并據(jù)此寫(xiě)出已知、求證和證明過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案