精英家教網 > 初中數學 > 題目詳情

【題目】某工程由甲乙兩隊合做天完成,廠家需付甲乙兩隊共元;乙丙兩隊合做天完成,廠家需付乙丙兩隊共元;甲丙兩隊合做天完成全部工程的,廠家需付甲丙兩隊共元.

(1)求甲、乙、丙各隊單獨完成全部工程各需多少天?

(2)若要求不超過天完成全啊工程,問可由哪隊單獨完成此項工程花錢最少?

【答案】(1),;(2)甲單獨完成此項工程花錢最少

【解析】本題主要考查分式方程的應用. (1)設甲隊單獨做x天完成,乙隊單獨做y天完成,丙隊單獨做z天完成,則甲、乙、丙的工作效率分別為 ,根據合做的效率= ,列分式方程組求解;

(2)設甲隊做一天應付給a元,乙隊做一天應付給b元,丙隊做一天應付給c元,用每天應付費用×完成任務天數=共付費用,列方程組求a、b、c,再根據工期的規(guī)定及花費最少答題.

解:(1)設甲隊單獨做x天完成,乙隊單獨做y天完成,丙隊單獨做z天完成,則 ;解方程組,得x=10,y=15,z=30;

(2)設甲隊做一天應付給a元,乙隊做一天應付給b元,丙隊做一天應付給c元,

則有6(a+b)=8700,10(b+c)=9500,5(a+c)=5500

解方程組,得a=800b=650,c=300

10a=8000(元),15b=9750(元),

由甲隊單獨完成此工程花錢最少.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠A=60°,BE⊥AC,垂足為E,CF⊥AB,垂足為F,點D是BC的中點,BE,CF交于點M.

(1)如果AB=AC,求證:△DEF是等邊三角形;

(2)如果AB≠AC,試猜想△DEF是不是等邊三角形?如果△DEF是等邊三角形,請加以證明;如果△DEF不是等邊三角形,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,ADBC,AP平分∠DAB,BP平分∠ABC,它們的交點P在線段CD上,下面的結論:①APBP;②點P到直線ADBC的距離相等;③PDPC.其中正確的結論有( )

A. ①②③ B. ①② C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某單位招聘員工,采取筆試與面試相結合的方式進行,兩項成績的原始分均為100分.前6名選手的得分如下:

    序號

項目

1

2

3

4

5

6

筆試成績/

85

92

84

90

84

80

面試成績/

90

88

86

90

80

85

根據規(guī)定,筆試成績和面試成績分別按一定的百分比折合成綜合成績(綜合成績的滿分仍為100)

16名選手筆試成績的中位數是________分,眾數是________分;

2現得知1號選手的綜合成績?yōu)?/span>88分,求筆試成績和面試成績各占的百分比;

3求出其余五名選手的綜合成績,并以綜合成績排序確定前兩名人選.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數y=mx+n(m≠0)的圖象與反比例函數y=(k≠0)的圖象交于第一、三象限內的A、B兩點,與y軸交于點C,過點B作BMx軸,垂足為M,BM=OM,OB=2,點A的縱坐標為4.

(1)求該反比例函數和一次函數的解析式;

(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,∠BOM=90°,∠DON=90°.

(1)若∠COM=∠AOC,求∠AOD的度數;

2)若COM=BOC,求AOCMOD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,有A、B兩動點在線段MN上各自做不間斷往返勻速運動(即只要動點與線段MN的某一端點重合則立即轉身以同樣的速度向MN的另一端點運動,與端點重合之前動點運動方向、速度均不改變),已知A的速度為3/秒,B的速度為2/

(1)已知MN=100米,若B先從點M出發(fā),當MB=5米時A從點M出發(fā),A出發(fā)后經過   秒與B第一次重合;

(2)已知MN=100米,若A、B同時從點M出發(fā),經過   AB第一次重合;

(3)如圖2,若A、B同時從點M出發(fā),AB第一次重合于點E,第二次重合于點F,且EF=20米,設MN=s米,列方程求s.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線OMON,垂足為O,三角板的直角頂點C落在∠MON的內部,三角板的另兩條直角邊分別與ON、OM交于點D和點B.

(1)填空:∠OBC+ODC=   

(2)如圖1:若DE平分∠ODC,BF平分∠CBM,求證:DEBF:

(3)如圖2:若BF、DG分別平分∠OBC、ODC的外角,判斷BFDG的位置關系,并說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一次數學課上,小明同學給小剛同學出了一道數形結合的綜合題,他是這樣出的:如圖,數軸上兩個動點 M,N 開始時所表示的數分別為﹣10,5M,N 兩點各自以一定的速度在數軸上運動,且 M 點的運動速度為2個單位長度/s

1M,N 兩點同時出發(fā)相向而行,在原點處相遇,求 N 點的運動速度

2MN 兩點按上面的各自速度同時出發(fā),向數軸正方向運動,幾秒時兩點相距6個單位長度?

3M,N 兩點按上面的各自速度同時出發(fā),向數軸負方向運動,與此同時,C 點從原點出發(fā)沿同方向運動,且在運動過程中,始終有 CNCM=12若干秒后,C 點在﹣12 處,求此時 N 點在數軸上的位置

查看答案和解析>>

同步練習冊答案