【題目】一次數(shù)學課上,小明同學給小剛同學出了一道數(shù)形結(jié)合的綜合題,他是這樣出的:如圖,數(shù)軸上兩個動點 M,N 開始時所表示的數(shù)分別為﹣10,5M,N 兩點各自以一定的速度在數(shù)軸上運動,且 M 點的運動速度為2個單位長度/s

1M,N 兩點同時出發(fā)相向而行,在原點處相遇,求 N 點的運動速度

2MN 兩點按上面的各自速度同時出發(fā),向數(shù)軸正方向運動,幾秒時兩點相距6個單位長度?

3M,N 兩點按上面的各自速度同時出發(fā),向數(shù)軸負方向運動,與此同時,C 點從原點出發(fā)沿同方向運動,且在運動過程中,始終有 CNCM=12若干秒后,C 點在﹣12 處,求此時 N 點在數(shù)軸上的位置

【答案】⑴1⑵t=9t=21⑶-4

【解析】分析:(1)N點的運動速度為x,M、N兩點同時出發(fā)相向而行,則他們的時間相等,列出等量關(guān)系: ,解得x即可;
(2)此問分兩種情況討論:設經(jīng)過時間為t,NM的前方,N點經(jīng)過的路程-M點經(jīng)過的路程=9;MN的前方則M點經(jīng)過的路程-N點經(jīng)過的路程=6;列出等式解出t即可;
(3)設點C的速度為y,始終有CNCM=12,,:,,C停留在-12,所用時間為: ,B的位置為5-9=-4.

本題解析:

(1)N點的運動速度為x,M、N兩點同時出發(fā)相向而行,則他們的時間相等,
: ,
解得,
所以N點的運動速度為1;
(2)設經(jīng)過時間為t.
NM的前方,N點經(jīng)過的路程-M點經(jīng)過的路程=6,
2t-t=15-6,解得t=9.
MN的前方,M點經(jīng)過的路程-N點經(jīng)過的路程=6,
2t-t=15+6,解得t=21.
(3)設點C的速度為y,始終有CNCM=12,
:,解得,
C停留在-12,所用時間為: ,
N的位置為5-9=-4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某工程由甲乙兩隊合做天完成,廠家需付甲乙兩隊共元;乙丙兩隊合做天完成,廠家需付乙丙兩隊共元;甲丙兩隊合做天完成全部工程的,廠家需付甲丙兩隊共元.

(1)求甲、乙、丙各隊單獨完成全部工程各需多少天?

(2)若要求不超過天完成全啊工程,問可由哪隊單獨完成此項工程花錢最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CBx軸于點A1,作第1個正方形A1B1C1C;延長C1B1x軸于點A2,作第2個正方形A2B2C2C1,…,按這樣的規(guī)律進行下去,第2016個正方形的面積是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1l2,l3、l4l1、l2分別交于點AB、C、D,點P在直線l3l4上且不與點AB、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.

(1)若點P在圖(1)位置時,求證:∠3=∠1+∠2;

(2)著點P在圖(2)位置時,請寫出∠1、∠2、∠3之間的關(guān)系,并說明理由;

(3)若點P在圖(3)位置時,寫出∠1、∠2、∠3之間的關(guān)系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,直線AB: 交y軸于點A,交x軸于點B,過點E(2,0)作x軸的垂線EF交AB于點D,點P是垂線EF上一點,且S△ADP=2,以PB為邊在第一象限作等腰Rt△BPC,則點C的坐標為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,CD的右側(cè),BE平分ABC,DE平分ADC,BE、DE所在直線交于點E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點B在點A的右側(cè),其他條件不變,畫出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=37°36′,在OB上有一點E,從E點射出一束光線經(jīng)OA上一點D反射,反射光線DC恰好與OB平行,入射角∠ODE與反射角∠ADC相等,則∠DEB的度數(shù)是( )

A. 75°36′ B. 75°12′ C. 74°36′ D. 74°12′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=3,BC=4,點DAB的中點,點EDC的延長線上,且CE=CD,過點BBFDEAE的延長線于點F,交AC的延長線于點G

1)求證:AB=BG;

2)若點P是直線BG上的一點,試確定點P的位置,使BCPBCD相似.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12)如圖1,已知Rt△ABC,AB=BC,AC=2,把一塊含30°角的三角板DEF的直角頂點D放在AC的中點上(直角三角板的短直角邊為DE,長直角邊為DF),CDEBDF上.

(1)求重疊部分△BCD的面積;

(2)如圖2,將直角三角板DEFD點按順時針方向旋轉(zhuǎn)30,DEBC于點M,DFAB于點N.

求證:DM=DN;

在此條件下重疊部分的面積會發(fā)生變化嗎?若發(fā)生變化請求出重疊部分的面積,若不發(fā)生變化,請說明理由;

(3)如圖3,將直角三角板DEFD點按順時針方向旋轉(zhuǎn)α(0<α<90),DEBC于點M,DFAB于點N,DM=DN的結(jié)論仍成立嗎?重疊部分的面積會變嗎?(請直接寫出結(jié)論,不需要說明理由)

查看答案和解析>>

同步練習冊答案