【題目】如圖,拋物線yax2+bx+cx軸交于點A(10),頂點坐標是(1n),與y軸的交點在(0,3)(0,6)之間(包含端點),則下列結論錯誤的是( )

A.3a+b0B.2≤a≤lC.abc0D.9a+3b+2c0

【答案】C

【解析】

根據(jù)二次函數(shù)圖象的性質進行判斷即可.

解:A.根據(jù)圖示知,拋物線開口方向向下,則a0.

∵對稱軸x1,

b=﹣2a

3a+b3a2aa0,即3a+b0;故A正確;

B.拋物線yax2+bx+cx軸交于點A(1,0),對稱軸直線是x1,

∴該拋物線與x軸的另一個交點的坐標是(30),

∴﹣1×3=﹣3

=﹣3,則a=﹣.

∵拋物線與y軸的交點在(0,3)(0,6)之間(包含端點),

3≤c≤6,

∴﹣2≤1,即﹣2≤a≤1;故B正確;

C.∵拋物線開口方向向下,則a0

∵與y軸的交點在(0,3)(0,6)之間,則c0,

∵對稱軸直線是x1,則ab異號,即b0,

abc0;故C錯誤;

D.∵則a=﹣,即c=﹣3a,b=﹣2a

9a+3b+2c9a+(6a)+(6a)=﹣3a,、

a0,

9a+3b+2c=﹣3a0;故D正確;

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸于AB兩點,交y軸于點C,拋物線的對稱軸交x軸于點E,點B的坐標為(1,0)

1)求拋物線的對稱軸及點A的坐標;

2)連結CA與拋物線的對稱軸交于點D

①在對稱軸上找一點P,使ΔAPC為直角三角形,求點P的坐標.

②在拋物線上是否存在點M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 某學校為了了解九年級學生的體能情況,抽取了部分學生進行了體能測試,學生的測試成績分四類:A:優(yōu)秀;B:良好;C:合格;D不合格,將抽測學生的成績繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖解答下列問題:

1)求本次調查的學生總人數(shù);

2)成績?yōu)?/span>C的女生有______人,成績?yōu)?/span>D的男生有______人;

3)扇形統(tǒng)計圖中成績?yōu)?/span>D的學生所對應的扇形的圓心角度數(shù)為______

4)補全條形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y的圖象經(jīng)過第一象限內的一點A(n,4),過點AABx軸于點B,且△AOB的面積為2

(1)mn的值;

(2)若一次函數(shù)ykx+2的圖象經(jīng)過點A,并且與x軸相交于點C,求線段AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點BC、D始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點CD之間的距離是10厘米,張角∠CAB60°.

(1)求支點D到滑軌MN的距離(精確到1厘米)

(2)將滑塊A向左側移動到A′,(在移動過程中,托臂長度不變,即ACAC′,BCBC)當張角∠CA'B45°時,求滑塊A向左側移動的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.73,2.452.65)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=ACAC交⊙O于點E,BC交⊙O于點DFCE的中點,連接DF.則下列結論錯誤的是

A.A=ABEB.

C.BD=DCD.DF是⊙O的切線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4AD=6,EAD邊上的一個動點,將四邊形BCDE沿直線BE折疊,得到四邊形BCDE,連接ACAD′.

1)若直線DABC于點F,求證:EF=BF;

2)當AE=時,求證:△ACD是等腰三角形;

3)在點E的運動過程中,求△ACD面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為減輕學生的作業(yè)負擔,某地教育局規(guī)定初中階段學生每晚的作業(yè)量不超過1.5小時,一個月后,九年一班芳芳對本班每位同學晚上作業(yè)時間進行了一次調查,并根據(jù)收集的數(shù)據(jù)繪制了如圖所示的不完整的頻數(shù)分布直方圖(每組包含最大值,不包含最小值),并知11.5h45%,22.5h10%,請根據(jù)以上信息解答問題.

1)求該班共有多少名學生;

2)求該班作業(yè)時間不超過1小時和超過2.5小時的共有多少人;

3)若該市九年級共有3000名學生,請估計他們中完成作業(yè)超過1.5小時而不超過2.5小時的有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1的方格紙中,線段AB的端點A、B均在小正方形的頂點上.

(1)在方格紙中畫出以AB為一條直角邊的等腰直角ABC,頂點C在小正方形的頂點上;

(2)在方格紙中畫出ABC的中線BD,將線段DC繞點C順時針旋轉90°得到線段CD′,畫出旋轉后的線段CD′,連接BD′,直接寫出四邊形BDCD′的面積.

查看答案和解析>>

同步練習冊答案