【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點A,B的坐標(biāo)分別為( ,0),(0,1),把Rt△AOB沿著AB對折得到Rt△AO′B,則點O′的坐標(biāo)為 .
【答案】
【解析】解:如圖,作O′C⊥y軸于點C,
∵點A,B的坐標(biāo)分別為( ,0),(0,1),∴OB=1,OA= ,∴tan∠BAO= = ,
∴∠BAO=30°,
∴∠OBA=60°,
∵Rt△AOB沿著AB對折得到Rt△AO′B,
∴∠CBO′=60°,
∴設(shè)BC=x,則OC′= x,∴x2+( x)2=1,解得:x= (負(fù)值舍去),∴OC=OB+BC=1+ = ,∴點O′的坐標(biāo)為( , ).
故答案為:( , ).
作O′C⊥y軸于點C,首先根據(jù)點A,B的坐標(biāo)分別為( ,0),(0,1)得到∠BAO=30°,從而得出∠OBA=60°,然后根據(jù)Rt△AOB沿著AB對折得到Rt△AO′B,得到∠CBO′=60°,最后設(shè)BC=x,則OC′= x,利用勾股定理求得x的值即可求解. 本題考查了翻折變換及坐標(biāo)與圖形的性質(zhì)的知識,解題的關(guān)鍵是根據(jù)點A和點B的坐標(biāo)確定三角形為特殊三角形,難度不大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.
(1)如圖①,若AB∥CD,點P在AB,CD外部,則有 ∠B=∠BOD,又因為∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.將點P移到AB,CD內(nèi)部,如圖②,以上結(jié)論是否成立?若成立,請說明理由;若不成立,則∠BPD,∠B,∠D之間有何數(shù)量關(guān)系?請證明你的結(jié)論;
(2)在圖②中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖③,則∠BPD,∠B,∠D,∠BQD之間有何數(shù)量關(guān)系?(不需證明)
(3)根據(jù)(2)的結(jié)論,求圖④中∠A+∠B+∠C+∠D+∠E的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好地治理水質(zhì),保護(hù)環(huán)境,我縣污水處理公司決定購買10臺污水處理設(shè)備,現(xiàn)有A、B兩種設(shè)備可供選擇,月處理污水分別為240m3/月、200m3/月,經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
(1)若污水處理公司購買設(shè)備的預(yù)算資金不超過105萬元,你認(rèn)為該公司有哪幾種購買方案?
(2)若每月需處理的污水約2040m3,在不突破資金預(yù)算的前提下,為了節(jié)約資金,又要保證治污效果,請你為污水處理公司設(shè)計一種最省錢的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,平行四邊形紙片ABCD中,AD=5,S甲行四邊形紙片ABCD=15,過點A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,在(1)中的四邊形紙片AEE′D中,在EE′上取一點F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
求證:四邊形AFF′D是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的對角線AC,BD相交于點O,E,F(xiàn)分別是AD,CD邊上的中點,連接EF.若EF= ,BD=2,則菱形ABCD的面積為( )
A.2
B.
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△A′B′C′由△ABC繞點P旋轉(zhuǎn)得到,則點P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點A(8,0),與y軸分別交于點B(0,4)和點C(0,16),則圓心M到坐標(biāo)原點O的距離是( 。
A.10
B.8
C.4
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù)。
阿基米德(Archimedes,公元前287~公元前212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一.
阿基米德折弦定理:如圖1,AB和BC是圓O的兩條弦(即折線ABC是圓的一條折弦), BC>AB,M是 的中點,即CD=AB+BD。下面是運用“截長法”證明CD=AB+BD的部分過程。
證明:如圖2,在CB上截取CG=AB,連接MA、MB、MC、MG。因為M是弧ABC的中點,所以MA=MC.
任務(wù):
(1)請按照上面的證明思路,完整證明阿基米德折弦定理,即CD=AB+BD。
(2)如圖3,已知等邊△ABC內(nèi)接于圓O,AB=1,D為 上一點,∠ABD=45°,AE⊥BD于點E,則△BDC的周長是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com