化簡•﹣,并求值,其中a與2、3構(gòu)成△ABC的三邊,且a為整數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省無錫市九年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分10分)已知:如圖,矩形ABCD中,CD=2,AD=3,以C點(diǎn)為圓心,作一個動圓,與線段AD交于點(diǎn)P(P和A、D不重合),過P作⊙C的切線交線段AB于F點(diǎn).
(1)求證:△CDP∽△PAF;
(2)設(shè)DP=x,AF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式,及自變量x的取值范圍;
(3)是否存在這樣的點(diǎn)P,使△APF沿PF翻折后,點(diǎn)A落在BC上,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點(diǎn)E,交BD于點(diǎn)F,連接CF.若∠A=60°,∠ABD=24°,則∠ACF的度數(shù)為( 。
| A. | 48° | B. | 36° | C. | 30° | D. | 24° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
新世紀(jì)百貨大樓“寶樂”牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六一”兒童節(jié),商場決定采取適當(dāng)?shù)慕祪r措施.經(jīng)調(diào)査,如果每件童裝降價1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝盈利1200元,則每件童裝應(yīng)降價多少元?設(shè)每件童裝應(yīng)降價x元,可列方程為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀與應(yīng)用:
閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因為(﹣)2≥0,所以a﹣2+b≥0從而a+b≥2(當(dāng)a=b時取等號).
閱讀2:若函數(shù)y=x+;(m>0,x>0,m為常數(shù)),由閱讀1結(jié)論可知:x+≥2,所以當(dāng)x=,即x=時,函數(shù)y=x+的最小值為2.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為2(x+),求當(dāng)x= 2 時,周長的最小值為 ;
問題2:已知函數(shù)y1=x+1(x>﹣1)與函數(shù)y2=x2+2x+10(x>﹣1),
當(dāng)x= 時,的最小值為 ;
問題3:某民辦學(xué)校每天的支出總費(fèi)用包含以下三個部分:一是教職工工資4900元;二是學(xué)生生活費(fèi)成本每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一組數(shù)據(jù)5,2,x,6,4的平均數(shù)是4,這組數(shù)據(jù)的方差是( )
A. 2 B. C. 10 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
為了弘揚(yáng)“社會主義核心價值觀”,市政府在廣場樹立公益廣告牌,如圖所示,為固定廣告牌,在兩側(cè)加固鋼纜,已知鋼纜底端D距廣告牌立柱距離CD為3米,從D點(diǎn)測得廣告牌頂端A點(diǎn)和底端B點(diǎn)的仰角分別是60°和45°.
(1)求公益廣告牌的高度AB;
(2)求加固鋼纜AD和BD的長.(注意:本題中的計算過程和結(jié)果均保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和B為圓心,以相同的長(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E,連接CD,下列結(jié)論錯誤的是( 。
A.AD=BD B. BD=CD C. ∠A=∠BED D. ∠ECD=∠EDC
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com