【題目】綜合與實踐
閱讀以下材料:
定義:兩邊分別相等且夾角互補的兩個三角形叫做“互補三角形”.
用符號語言表示為:如圖①,在△ABC與△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC與△DEF是互補三角形.
反之,“如果△ABC與△DEF是互補三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.
自主探究
利用上面所學(xué)知識以及全等三角形的相關(guān)知識解決問題:
(1)性質(zhì):互補三角形的面積相等
如圖②,已知△ABC與△DEF是互補三角形.
求證:△ABC與△DEF的面積相等.
證明:分別作△ABC與△DEF的邊BC,EF上的高線,則∠AGC=∠DHE=90°.
…… (將剩余證明過程補充完整)
(2)互補三角形一定不全等,請你判斷該說法是否正確,并說明理由,如果不正確,請舉出一個反例,畫出示意圖.
【答案】(1)見解析;(2)不正確,理由見解析
【解析】
(1)已知△ABC與△DEF是互補三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,證得∠ACG=∠E,證明△AGC≌△DHE,得到AG=DH,所以,即△ABC與△DEF的面積相等.
(2)不正確.先畫出反例圖,證明△ABC≌△DEF,△ABC與△DEF是互補三角形.互補三角形一定不全等的說法錯誤.
(1)∵△ABC與△DEF是互補三角形,
∴∠ACB+∠E=180°,AC=DE,BC=EF.
又∵∠ACB+∠ACG=180°,
∴∠ACG=∠E,
在△AGC與△DHE中,
∴△AGC≌△DHE(AAS)
∴AG=DH.
∴
即△ABC與△DEF的面積相等.
(2)不正確.
反例如解圖,在△ABC和△DEF中,
∴△ABC≌△DEF(SAS),
∴△ABC與△DEF是互補三角形.
∴互補三角形一定不全等的說法錯誤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系內(nèi),O為原點,點A的坐標為(10,0),點B在第一象限內(nèi),BO=5,sin∠BOA=. 求:(1)點B的坐標;(2)cos∠BAO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x 軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,分別以兩腰為邊向△ABC外作等邊三角形ADB和等邊三角形ACE. 若∠DAE=∠DBC,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B的坐標分別為(1, 4)和(4, 4),拋物線的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側(cè)),點C的橫坐標最小值為-3,則點D的橫坐標最大值為_______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實踐課上,老師以“含30°的三角板和等腰三角形紙片”為模具與同學(xué)們開展數(shù)學(xué)活動.
已知,在等腰三角形紙片ABC中,CA=CB=5,∠ACB=120°,將一塊含30°角的足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖所示放置,頂點P在線段BA上滑動(點P不與A,B重合),三角尺的直角邊PM始終經(jīng)過點C,并與CB的夾角∠PCB=α,斜邊PN交AC于點D.
(1)特例感知
當(dāng)∠BPC=110°時,α= °,點P從B向A運動時,∠ADP逐漸變 (填“大”或“小”).
(2)合作交流
當(dāng)AP等于多少時,△APD≌△BCP,請說明理由.
(3)思維拓展
在點P的滑動過程中,△PCD的形狀可以是等腰三角形嗎?若可以,請求出夾角α的大;若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上有三個點A、B、C,它們可以沿著數(shù)軸左右移動,請回答:
(1)點A、B、C分別表示的數(shù)是______________________。
(2)將點B 向右移動三個單位長度后到達點D,點D表示的數(shù)是_____________。
(3)移動點A到達點E,使B、C、E三點的其中任意一點為連接另外兩點之間線段的中點,請直接寫出所有點A 移動的距離和方向。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,拋物線y=x2+bx+c經(jīng)過點A,B,交正x軸于點D,E是OC上的動點(不與C重合)連接EB,過B點作BF⊥BE交y軸與F
(1)求b,c的值及D點的坐標;
(2)求點E在OC上運動時,四邊形OEBF的面積有怎樣的規(guī)律性?并證明你的結(jié)論;
(3)連接EF,BD,設(shè)OE=m,△BEF與△BED的面積之差為S,問:當(dāng)m為何值時S最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),與y軸的交點B在(0,﹣2)和(0,﹣1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com