【題目】某大型超市的采購人員先后購進兩批晉祠大米,購進第一批大米共花費5400元,進貨單價為m元/千克,該超市將其中3000千克優(yōu)等品以進貨單價的兩倍對外出售,余下的二等品則以1.5元/千克的價格出售.當(dāng)?shù)谝慌竺兹渴鄢龊螅ㄙM5000元購進了第二批大米,這一次的進貨單價比第一批少了0.2元.其中優(yōu)等品占總重量的一半,超市以2元/千克的單價出售優(yōu)等品,余下的二等品在這批進貨單價的基礎(chǔ)上每千克加價0.6元后全部賣完,若不計其他成本,則售完第二批大米獲得的總利潤是4000元(總售價﹣總進價=總利潤)
(1)用含m的代數(shù)式表示第一批大米的總利潤.
(2)求第一批大米中優(yōu)等品的售價.
【答案】(1)6000m+﹣9900;(2)2.4元.
【解析】
試題分析:(1)用總銷售額減去成本即可求出毛利潤;(2)設(shè)第一批進貨單價為m元/千克,則第二批的進貨單價為(m﹣2)元/千克,根據(jù)第二批大米獲得的毛利潤是4000元,列方程求解.
試題解析:(1)由題意得,總利潤為:3000×2m+1.5×(﹣3000)﹣5400=6000m+﹣9900;(2)設(shè)第一批進貨單價為m元/千克,由題意得,××2+××(m﹣0.2+0.6)﹣5000=4000,解得:m=1.2,經(jīng)檢驗:m=1.2是原分式方程的解,且符合題意.則優(yōu)等品的售價為:2m=2.4.所以第一批大米中優(yōu)等品的售價是2.4元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學(xué)去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請問從甲、乙兩班各抽調(diào)了多少人參加歌詠比賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級共有800名學(xué)生,準(zhǔn)備調(diào)查他們對“低碳”知識的了解程度.
(1)在確定調(diào)查方式時,團委設(shè)計了以下三種方案:
方案一:調(diào)查八年級部分女生;
方案二:調(diào)查八年級部分男生;
方案三:到八年級每個班去隨機調(diào)查一定數(shù)量的學(xué)生.
請問其中最具有代表性的一個方案是;
(2)團委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補充完整;
(3)請你估計該校八年級約有多少名學(xué)生比較了解“低碳”知識.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點P(x,y)的橫坐標(biāo)x的絕對值表示為|x|,縱坐標(biāo)y的絕對值表示為|y|,我們把點P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對值之和叫做點P(x,y)的勾股值,記為 :P,即P=|x|+|y|(其中“+”是四則運算中的加法).
(1)求點A(-1,3),B(+2, -2)的勾股值A(chǔ)、B;
(2)求滿足條件N=3的所有點N圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)(﹣1)2012+(π﹣3.14)0﹣(﹣ )﹣1
(2)化簡求值:(2x+y)2﹣(2x﹣y)(x+y)﹣2(x﹣2y)(x+2y),其中x= ,y=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一小球被拋出后,距離地面的高度h(米)和飛行時間t(秒)滿足下列函數(shù)解析式:h=﹣3(t﹣2)2+5,則小球距離地面的最大高度是( )
A.2米
B.3米
C.5米
D.6米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com