【題目】問(wèn)題探究
(1)請(qǐng)?jiān)趫D①的的邊上求作一點(diǎn),使最短;
(2)如圖②,點(diǎn)為內(nèi)部一點(diǎn),且滿(mǎn)足.求證:點(diǎn)到點(diǎn)、、的距離之和最短,即最短;
問(wèn)題解決
(3)如圖③,某高校有一塊邊長(zhǎng)為400米的正方形草坪,現(xiàn)準(zhǔn)備在草坪內(nèi)放置一對(duì)石凳及垃圾箱在點(diǎn)處,使點(diǎn)到、、三點(diǎn)的距離之和最小,那么是否存在符合條件的點(diǎn)?若存在,請(qǐng)作出點(diǎn)的位置,并求出這個(gè)最短距離;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)證明見(jiàn)解析;(3)存在,作圖見(jiàn)解析;點(diǎn)到三點(diǎn)的距離之和最小值為米.
【解析】
(1)根據(jù)垂線(xiàn)段最短、利用尺規(guī)作圖作出點(diǎn)P;
(2)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,連接,,,根據(jù)作圖可知和均為等邊三角形,連接,根據(jù)兩點(diǎn)之間線(xiàn)段最短可知,當(dāng)時(shí),短,
(3)以BC為邊作正△BCD,使點(diǎn)D與點(diǎn)A在BC兩側(cè),作△BCD的外接圓,連接AD交圓于P,連接PB,作DE⊥AC交AC的延長(zhǎng)線(xiàn)于E,根據(jù)勾股定理、直角三角形的性質(zhì)計(jì)算,得到答案.
解:(1)如圖①,過(guò)點(diǎn)作的垂線(xiàn),
垂足為,點(diǎn)記為所求;
(2)如圖②,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,
將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,
連接,,,
根據(jù)作圖可知和均為等邊三角形,
∴,,
,
∴,
∴,
∴,
∴,
∴,
連接,根據(jù)兩點(diǎn)之間線(xiàn)段最短可知,
當(dāng)時(shí),
最短,
∵,
∴,
又∵為等邊三角形,
∴四點(diǎn)共線(xiàn),
∴,
∴當(dāng)時(shí),最短;
(3)存在符合條件的點(diǎn).
如解圖③,以為作等邊,在作的外接圓,
連接,交于點(diǎn),
此時(shí)最小,
在上截取.
∵在等邊中,
∴(同弧所對(duì)的圓周角相等)
∴為等邊三角形,
∴.
∴.
∴.
又∵,,
∴,
∴,
∴最。
理由如下:
設(shè)點(diǎn)為正方形內(nèi)任意一點(diǎn),
連接,、,
將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到.
∵,
∴為的最短距離.
在中,,米,
∴(米),
(米),
∴(米).
在中,
.
∴點(diǎn)到三點(diǎn)的距離之和最小值為米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是的直徑,是的弦.
(1)如圖①,連接,若,求的大。
(2)如圖②;是半圓弧的中點(diǎn),的延長(zhǎng)線(xiàn)與過(guò)點(diǎn)的切線(xiàn)相交于點(diǎn),若,求的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)是(-1,0),點(diǎn)的坐標(biāo)是(0,6),為的中點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°.后得到.若反比例函數(shù)的圖像恰好經(jīng)過(guò)的中點(diǎn),則k的值是( )
A.19B.16.5C.14D.11.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)分別交軸、軸于點(diǎn),交直線(xiàn)于點(diǎn).動(dòng)點(diǎn)在直線(xiàn)上以每秒個(gè)單位的速度從點(diǎn)向終點(diǎn)運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)以每秒個(gè)單位的速度從點(diǎn)沿的方向運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)終點(diǎn)時(shí),點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)求點(diǎn)的坐標(biāo)和的長(zhǎng).
(2)當(dāng)時(shí),線(xiàn)段交于點(diǎn)且求的值.
(3)在點(diǎn)的整個(gè)運(yùn)動(dòng)過(guò)程中,
①直接用含的代數(shù)式表示點(diǎn)的坐標(biāo).
②利用(2)的結(jié)論,以為直角頂點(diǎn)作等腰直角(點(diǎn)按逆時(shí)針順序排列).當(dāng)與的一邊平行時(shí),求所有滿(mǎn)足條件的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全球已經(jīng)進(jìn)入大數(shù)據(jù)時(shí)代,大數(shù)據(jù)(bigdata)是指數(shù)據(jù)規(guī)模巨大,類(lèi)型多樣且信息傳播速度快的數(shù)據(jù)庫(kù)體系.大數(shù)據(jù)在推動(dòng)經(jīng)濟(jì)發(fā)展,改善公共服務(wù)等方面日益顯示出巨大的價(jià)值.為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機(jī)構(gòu)針對(duì)市民最關(guān)心的四類(lèi)生活信息進(jìn)行了民意調(diào)查(被調(diào)查者每人限選一項(xiàng)),下面是根據(jù)調(diào)查結(jié)果繪制出不完整的兩個(gè)統(tǒng)計(jì)圖表:
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次參與調(diào)查的人數(shù)是________,扇形統(tǒng)計(jì)圖中部分的圓心角的度數(shù)是________,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)這次調(diào)查的市民最關(guān)心的四類(lèi)生活信息的眾數(shù)是________類(lèi);
(3)若我市現(xiàn)有常住人口約600萬(wàn),請(qǐng)你估計(jì)最關(guān)心“城市醫(yī)療信息”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程ax2+2x﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求a的取值范圍;
(2)若此方程的一個(gè)實(shí)數(shù)根為1,求a的值及方程的另一個(gè)實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,M是CD邊上一動(dòng)點(diǎn)(不與D點(diǎn)重合),點(diǎn)D與點(diǎn)E關(guān)于AM所在的直線(xiàn)對(duì)稱(chēng),連接AE,ME,延長(zhǎng)CB到點(diǎn)F,使得BF=DM,連接EF,AF.
(1)依題意補(bǔ)全圖1;
(2)若DM=1,求線(xiàn)段EF的長(zhǎng);
(3)當(dāng)點(diǎn)M在CD邊上運(yùn)動(dòng)時(shí),能使△AEF為等腰三角形,直接寫(xiě)出此時(shí)tan∠DAM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1) ,將一個(gè)正六邊形各邊延長(zhǎng),構(gòu)成一個(gè)正六角星形AFBDCE,它的面積為1,取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和1D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E 2F 2,如圖(3) 中陰影部分;如此下去…,則正六角星形AnFnBnDnCnE nF n的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,∠ACB=90°,過(guò)點(diǎn)D作DE⊥BC交BC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:四邊形ACED是矩形;
(2)連接AE交CD于點(diǎn)F,連接BF.若∠ABC=60°,CE=2,求BF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com