如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,連接OD,AB=,∠CBO=45°,在直線BE上求點(diǎn)M,使△BMC與△ODC相似,則點(diǎn)M的坐標(biāo)是 .
(1,﹣1)或(﹣,): 解:∵OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,AB=,∠CBO=45°,
∴AB=AC=,OD=CD,
在Rt△BAC中,BC==2,
∴OB=2,
∴OA=OB﹣AB=2﹣,
在Rt△OAC中,OC==2,
在Rt△OAD中,OA2+AD2=OD2,
(2﹣)2+AD2=(﹣AD)2,
解得AD=2﹣,
∴OD=CD=2﹣2,
在Rt△BAD中,BD==2,
①如圖1,△BMC∽△CDO時,過M點(diǎn)作MF⊥AB于F,
=,即=,
解得BM=,
∵M(jìn)F⊥AB,CA是OB邊上的高,
∴MF∥DA,
∴△BMF∽△BDA,
∴==,即==,
解得BF=1,MF=﹣1,
∴OF=OB﹣BF=1,
∴點(diǎn)M的坐標(biāo)是(1,﹣1);
②如圖2,△BCM∽△CDO時,過M點(diǎn)作MF⊥AB于F,
=,即=,
解得BM=2,
∵M(jìn)F⊥AB,CA是OB邊上的高,
∴MF∥DA,
∴△BMF∽△BDA,
∴==,即==,
解得BF=2+,MF=,
∴OF=BF﹣OB=,
∴點(diǎn)M的坐標(biāo)是(﹣,).
綜上所述,點(diǎn)M的坐標(biāo)是(1,﹣1)或(﹣,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學(xué)將一個三角形紙片的一個頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,∠EDF=60°,當(dāng)CE=AF時,如圖1小芳同學(xué)得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時,如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由;
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時,y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運(yùn)貨15.5噸,5輛大貨車與6輛小貨車一次可以運(yùn)貨35噸.設(shè)一輛大貨車一次可以運(yùn)貨x噸,一輛小貨車一次可以運(yùn)貨y噸,根據(jù)題意所列方程組正確的是( 。
| A. |
| B. |
|
| C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,AB為⊙O的直徑,點(diǎn)P是直徑AB上任意一點(diǎn),過點(diǎn)P作弦CD⊥AB,垂足為P,過點(diǎn)B的直線與線段AD的延長線交于點(diǎn)F,且∠F=∠ABC.
(1)若CD=2,BP=4,求⊙O的半徑;
(2)求證:直線BF是⊙O的切線;
(3)當(dāng)點(diǎn)P與點(diǎn)O重合時,過點(diǎn)A作⊙O的切線交線段BC的延長線于點(diǎn)E,在其它條件不變的情況下,判斷四邊形AEBF是什么特殊的四邊形?請在圖2中補(bǔ)全圖象并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小島A在港口B的北偏東50°方向,小島C在港口B的北偏西25°方向,一艘輪船以每小時20海里的速度從港口B出發(fā)向小島A航行,經(jīng)過5小時到達(dá)小島A,這時測得小島C在小島A的北偏西70°方向,求小島A距離小島C有多少海里?(最后結(jié)果精確到1海里,參考數(shù)據(jù):≈1.1414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知二次函數(shù)()的圖象如圖所示,
給出以下四個結(jié)論:
①;②;③;④。
其中正確的結(jié)論有
A、1個 B、2個 C、3個 D、4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com