【題目】如圖,在ABCD中,對(duì)角線(xiàn)AC,BD交于點(diǎn)O,OA=OB,過(guò)點(diǎn)B作BE⊥AC于點(diǎn)E.
(1)求證:ABCD是矩形;
(2)若AD=,cos∠ABE=,求AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)5.
【解析】
(1)先說(shuō)明.OA=OC,OB=OD,再證得AC=BD,即可證明ABCD是矩形;
(2)先說(shuō)明∠BAD=∠ADC=90°,再求得∠CAD=∠ABE,最后解直角三角形即可.
(1)證明:∵四邊形ABCD是平行四邊形
∴OA=OC,OB=OD
又∵OA=OB,
∴OA=OB=OC=OD,
∴AC=BD,
∴OABCD是矩形;
(2)解∵四邊形ABCD是矩形,
∴∠BAD=∠ADC=90°,
∴∠BAC+∠CAD=90°,
∵BE⊥AC,
∴∠BAC+∠ABE=90°,
∴∠CAD=∠ABE,
在Rt△ACD中,AD=,cos∠CAD==cos∠ABE=
∴AC=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名大學(xué)畢業(yè)生響應(yīng)國(guó)家“自主創(chuàng)業(yè)”的號(hào)召,在成都市高新區(qū)租用了一個(gè)門(mén)店,聘請(qǐng)了兩名員工,計(jì)劃銷(xiāo)售一種產(chǎn)品.已知該產(chǎn)品成本價(jià)是20元/件,其銷(xiāo)售價(jià)不低于成本價(jià),且不高于30元/件,員工每人每天的工資為200元.經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)求每件產(chǎn)品銷(xiāo)售價(jià)為多少元時(shí),每天門(mén)店的純利潤(rùn)最大?最大純利潤(rùn)是多少?(純利潤(rùn)=銷(xiāo)售收入﹣產(chǎn)品成本﹣員工工資)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某兒童游樂(lè)園推出兩種門(mén)票收費(fèi)方式:
方式一:購(gòu)買(mǎi)會(huì)員卡,每張會(huì)員卡費(fèi)用是元,憑會(huì)員卡可免費(fèi)進(jìn)園次,免費(fèi)次數(shù)用完以后,每次進(jìn)園憑會(huì)員卡只需元;
方式二:不購(gòu)買(mǎi)會(huì)員卡,每次進(jìn)園是元(兩種方式每次進(jìn)園均指單人)設(shè)進(jìn)園次數(shù)為( 為非負(fù)整數(shù)) .
(1)根據(jù)題意,填寫(xiě)下表:
進(jìn)園次數(shù)(次) | ··· | |||
方式一收費(fèi)(元) | ··· | |||
方式二收費(fèi)(元) | ··· |
(2)設(shè)方式一收費(fèi)元,方式二收費(fèi)元,分別寫(xiě)出關(guān)于的函數(shù)關(guān)系式;;
(3)當(dāng)時(shí),哪種進(jìn)園方式花費(fèi)少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次綜合社會(huì)實(shí)踐活動(dòng)中,小東同學(xué)從A處出發(fā),要到A地北偏東60°方向的C處,他先沿正東方向走了4千米到達(dá)B處,再沿北偏東15°方向走,恰能到達(dá)目的地C,如圖所示,則A、C兩地相距__千米.(結(jié)果精確到0.1千米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面內(nèi)有一點(diǎn)P到△ABC的三個(gè)頂點(diǎn)的距離分別為PA、PB、PC,若有PA2+PB2=PC2,則稱(chēng)點(diǎn)P為△ABC關(guān)于點(diǎn)C的勾股點(diǎn).
(1)如圖2,在4×3的方格紙中,每個(gè)小正方形的邊長(zhǎng)均為1,△ABC的頂點(diǎn)在格點(diǎn)上,請(qǐng)找出所有的格點(diǎn)P,使點(diǎn)P為△ABC關(guān)于點(diǎn)A的勾股點(diǎn).
(2)如圖3,△ABC為等腰直角三角形,P是斜邊BC延長(zhǎng)線(xiàn)上一點(diǎn),連接AP,以AP為直角邊作等腰直角三角形APD(點(diǎn)A、P、D順時(shí)針排列)∠PAD=90°,連接DC,DB,求證:點(diǎn)P為△BDC關(guān)于點(diǎn)D的勾股點(diǎn).
(3)如圖4,點(diǎn)E是矩形ABCD外一點(diǎn),且點(diǎn)C是△ABE關(guān)于點(diǎn)A的勾股點(diǎn),若AD=8,CE=5,AD=DE,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)L:y=kx+2k(k>0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與函數(shù)(x>0)的圖象的交點(diǎn)P位于第一象限.
(1)若點(diǎn)P的坐標(biāo)為(1,6),
①求m的值及點(diǎn)A的坐標(biāo);
②=_________;
(2)直線(xiàn)h:y=2kx-2與y軸交于點(diǎn)C,與直線(xiàn)L1交于點(diǎn)Q,若點(diǎn)P的橫坐標(biāo)為1,
①寫(xiě)出點(diǎn)P的坐標(biāo)(用含k的式子表示);
②當(dāng)PQ≤PA時(shí),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E為BC的中點(diǎn),將△ABE沿直線(xiàn)AE折疊時(shí)點(diǎn)B落在點(diǎn)F處,連接FC,若∠DAF=18°,則∠DCF=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,西安市薦福寺內(nèi)的小雁塔,是中國(guó)早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點(diǎn),被列入《世界遺產(chǎn)名錄》.某周末,小樂(lè)和小夏相約去小雁塔游玩,在休息時(shí),他們想利用所學(xué)知識(shí)測(cè)量小雁塔的高度,于是他們向工作人員借來(lái)測(cè)量工具由于觀測(cè)點(diǎn)與小雁塔底部間的距離不易測(cè)量,于是他們利用太陽(yáng)光照射影子進(jìn)行測(cè)量,小樂(lè)先在小雁塔的影子頂端處豎直立一根長(zhǎng)1.72米的木棒,并測(cè)得此時(shí)木棒的影長(zhǎng)米;然后小夏在的延長(zhǎng)線(xiàn)上找出一點(diǎn),使得、、三點(diǎn)在同一直線(xiàn)上,并測(cè)得米已知圖中所有點(diǎn)均在同一平面內(nèi),,,根據(jù)以上測(cè)量過(guò)程及數(shù)據(jù),請(qǐng)你幫他們求出小雁塔的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)的圖象與反比例函數(shù)的圖象交于點(diǎn).
(1)求、的值;
(2)點(diǎn)是軸上的一點(diǎn),過(guò)點(diǎn)作軸的垂線(xiàn),交直線(xiàn)于點(diǎn),交反比例函數(shù)的圖象于點(diǎn).橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記的圖象在點(diǎn),之間的部分與線(xiàn)段,圍成的區(qū)域(不含邊界)為.
①當(dāng)時(shí),直接寫(xiě)出區(qū)域內(nèi)的整點(diǎn)的坐標(biāo)為______;
②若區(qū)域內(nèi)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com