【題目】在某次射擊訓(xùn)練中,甲、乙、丙、丁4人各射擊10次,平均成績相同,方差分別是

S2=0.35,S2=0.15,S2=0.25,S2=0.27,這4人中成績發(fā)揮最穩(wěn)定的是(  )

A. B. C. D.

【答案】B

【解析】試題分析:方差越大,則平均值的離散程度越大,穩(wěn)定性也越。环粗,則它與其平均值的離散程度越小,穩(wěn)定性越好,據(jù)此判斷出這4人中成績發(fā)揮最穩(wěn)定的是哪個即可.

解:∵S2=0.35,S2=0.15,S2=0.25,S2=0.27

∴S2S2S2S2,

4人中成績發(fā)揮最穩(wěn)定的是乙.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明某學(xué)期的數(shù)學(xué)平時成績70,期中考試80,期末考試85,若計算學(xué)期總評成績的方法如下平時期中期末=334則小明總評成績是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的周長為10cm,底邊長為ycm,腰長為xcm,用x表示y的函數(shù)關(guān)系式為 ______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材在探索平方差公式時利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱無字證明,例如,著名的趙爽弦圖 (如圖,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c ),大正方形的面積可以表示為c2,也可以表示為4×ab+(a-b)2由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長為a,b,斜邊長為c,那么a2+b2=c2.

(1) 為美國第二十任總統(tǒng)伽菲爾德的總統(tǒng)證法,請你利用圖推導(dǎo)勾股定理.

(2) 如圖,在RtABC中,ACB=90°,AC=3 cm,BC=4 cm,則斜邊AB上的高CD的長為________cm.

(3) 試構(gòu)造一個圖形,使它的面積能夠解釋(a+b)(a+2b)=a2+3ab+2b2,畫在圖的網(wǎng)格中,并標(biāo)出字母a,b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)果農(nóng)收獲草莓30噸,枇杷13噸,現(xiàn)計劃租用甲、乙兩種貨車共10輛將這批水果全部運(yùn)往省城,已知甲種貨車可裝草莓4噸和枇杷1噸,乙種貨車可裝草莓、枇杷各2噸.

(1)該果農(nóng)安排甲、乙兩種貨車時有幾種方案請您幫助設(shè)計出來;

(2)若甲種貨車每輛要付運(yùn)輸費(fèi)2 000元,乙種貨車每輛要付運(yùn)輸費(fèi)1 300元,則該果農(nóng)應(yīng)選擇哪種運(yùn)輸方案才能使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)A﹣1,2)向右平移3個單位長度得到點(diǎn)B,則點(diǎn)B關(guān)于x軸的對稱點(diǎn)C的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知等腰直角三角形ABC的直角邊長與正方形DEFG的邊長均為8 cm,EF與AC在同一條直線上,開始時點(diǎn)A與點(diǎn)F重合,讓三角形ABC向左移動,最后點(diǎn)A與點(diǎn)E重合。

1)試寫出兩圖形重疊部分的面積 y(cm)與線段AF的長度x(cm)之間的函數(shù)關(guān)系式。

(2)當(dāng)點(diǎn)A向左移動2cm時,重疊部分的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某儲運(yùn)站現(xiàn)有甲種貨物1530噸,乙種貨物1150噸,安排用一列貨車將這批貨物運(yùn)往青島,這列貨車可掛A、B兩種不同規(guī)格的貨廂50節(jié).已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型貨廂,甲種貨物25噸和乙種貨物35噸可裝滿一節(jié)B型貨廂,按此要求安排A、B兩種貨廂的節(jié)數(shù),有哪幾種運(yùn)輸方案?請設(shè)計出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】與直線y=-2x平行的直線可以是________.(寫出一個即可)

查看答案和解析>>

同步練習(xí)冊答案