【題目】在矩形中,,點(diǎn)是的中點(diǎn),將沿折疊后得到,點(diǎn)的對應(yīng)點(diǎn)為點(diǎn).(1)若點(diǎn)恰好落在邊上,則______,(2)延長交直線于點(diǎn),已知,則______.
【答案】6 或
【解析】
(1)由矩形的性質(zhì)得出,,由折疊的性質(zhì)得出,由平行線的性質(zhì)得出,推出,得出,即可得出結(jié)果;
(2)①當(dāng)點(diǎn)在矩形內(nèi)時,連接,由折疊的性質(zhì)得出,,,由矩形的性質(zhì)和是的中點(diǎn),得出,,,由證得,得出,由,得出,,,由勾股定理即可求出;
②當(dāng)點(diǎn)在矩形外時,連接,由折疊的性質(zhì)得出,,,由矩形的性質(zhì)和是的中點(diǎn),得出,,,由證得,得出,由,得出,由勾股定理得出:,即,即可求出.
解:(1)四邊形是矩形,
,,
由折疊的性質(zhì)可知,,如圖1所示:
,
,
,
,
是的中點(diǎn),
,
,
(2)①當(dāng)點(diǎn)在矩形內(nèi)時,連接,如圖2所示:
由折疊的性質(zhì)可知,,,,
四邊形是矩形,是的中點(diǎn),
,,,
在和中,,
,
,
,
,,,
;
②當(dāng)點(diǎn)在矩形外時,連接,如圖3所示:
由折疊的性質(zhì)可知,,,,
四邊形是矩形,是的中點(diǎn),
,,,
在和中,,
,
,
,
,
,
即:,
,
解得:,(不合題意舍去),
綜上所述,或,
故答案為:(1)6;(2)或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)在數(shù)軸上表示的數(shù)是,且滿足,多項(xiàng)式是五次四項(xiàng)式.
(1)的值為 ,的值為 ,的值為 .
(2)已知點(diǎn)是數(shù)軸上的兩個動點(diǎn),點(diǎn)以每秒3個單位的速度向右運(yùn)動,同時點(diǎn)從點(diǎn)出發(fā),以每秒7個單位的速度向左運(yùn)動:
①若點(diǎn)從點(diǎn)出發(fā),點(diǎn)和點(diǎn)經(jīng)過秒后,在數(shù)軸上的點(diǎn)處相遇,求的值和點(diǎn)所表示的數(shù);
②若點(diǎn)先從點(diǎn)出發(fā),運(yùn)動到點(diǎn)處,點(diǎn)再出發(fā),則點(diǎn)運(yùn)動幾秒后兩點(diǎn)之間的距離為5個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b為有理數(shù),且a,b不為0,則定義有理數(shù)對(a,b)的“真誠值”為d(a,b)=,如有理數(shù)對(3,2)的“真誠值”為d(3,2)=23﹣10=﹣2,有理數(shù)對(﹣2,5)的“真誠值”為d(﹣2,5)=(﹣2)5﹣10=﹣42.
(1)求有理數(shù)對(﹣3,2)與(1,2)的“真誠值”;
(2)求證:有理數(shù)對(a,b)與(b,a)的“真誠值”相等;
(3)若(a,2)的“真誠值”的絕對值為|d(a,2)|,若|d(a,2)|=6,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是______.(把所有正確結(jié)論的序號都填在橫線上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛.據(jù)統(tǒng)計(jì),每輛車的月租金為4000元時,可全部租出.每輛車的月租金每增加100元,未租出的車將增加1輛.租出的車每輛每月的維護(hù)費(fèi)為500元,未租出的車每輛每月只需維護(hù)費(fèi)100元.
(1)當(dāng)每輛車的月租金為4600元時,能租出多少輛?并計(jì)算此時租賃公司的月收益(租金收入扣除維護(hù)費(fèi))是多少萬元?
(2)規(guī)定每輛車月租金不能超過7200元,當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益(租金收入扣除維護(hù)費(fèi))可達(dá)40.4萬元?
(3)當(dāng)每輛車的月租金定為_________元時,租賃公司的月收益最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),且∠AOB=40°,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動點(diǎn),當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某沿海城市A接到臺風(fēng)警報(bào),在該城市正南方向260 km的B處有一臺風(fēng)中心,沿BC方向以15 km/h的速度向C移動,已知城市A到BC的距離AD=100 km,那么臺風(fēng)中心經(jīng)過多長時間從B點(diǎn)移動到D點(diǎn)?如果在距臺風(fēng)中心30 km的圓形區(qū)域內(nèi)都將受到臺風(fēng)的影響,正在D點(diǎn)休息的游人在接到臺風(fēng)警報(bào)后的幾小時內(nèi)撤離才可以免受臺風(fēng)的影響?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某涌泉蜜桔長方體包裝盒的展開圖.具體數(shù)據(jù)如圖所示,且長方體盒子的長是寬的2倍.
(1)展開圖的6個面分別標(biāo)有如圖所示的序號,若將展開圖重新圍成一個包裝盒,則相對的面分別是 與 , 與 , 與 ;
(2)若設(shè)長方體的寬為xcm,則長方體的長為 cm,高為 cm;(用含x的式子表示)
(3)求這種長方體包裝盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠1=∠2,EG 平分∠AEC.
(1)如圖1,∠MAE=50°,∠FEG=15°,∠NCE=80°.試判斷 EF 與 CD 的位置關(guān)系,并說明理由.
(2)如圖2,∠MAE=135°,∠FEG=30°,當(dāng) AB∥CD 時,求∠NCE 的度數(shù);
(3)如圖2,試寫出∠MAE、∠FEG、∠NCE 之間滿足什么關(guān)系時,AB∥CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com