【題目】如圖,拋物線(xiàn)y=ax2+x+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)C (0,3)與x軸的另一交點(diǎn)為點(diǎn)B,點(diǎn)M是直線(xiàn)BC上一動(dòng)點(diǎn),過(guò)點(diǎn)M作MP∥y軸,交拋物線(xiàn)于點(diǎn)P.
(1)求該拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)上是否存在一點(diǎn)Q,使得△QCO是等邊三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)以M為圓心,MP為半徑作⊙M,當(dāng)⊙M與坐標(biāo)軸相切時(shí),求出⊙M的半徑.
【答案】(1)y=﹣x2+x+3;(2)不存在,理由見(jiàn)解析;(3)⊙M的半徑為或
【解析】
(1)已知拋物線(xiàn)y=ax2+x+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)C(0,3),利用待定系數(shù)法即可求得拋物線(xiàn)解析式;
(2)在拋物線(xiàn)上找到一點(diǎn)Q,使得△QCO是等邊三角形,過(guò)點(diǎn)Q作OM⊥OB于點(diǎn)M,過(guò)點(diǎn)Q作QN⊥OC于點(diǎn)N,根據(jù)△QCO是等邊三角形,求得Q點(diǎn)坐標(biāo),再驗(yàn)證Q點(diǎn)是否在拋物線(xiàn)上;
(3)分兩種情況①當(dāng)⊙M與y軸相切,如圖所示,令M點(diǎn)橫坐標(biāo)為t,PM=t,將PM用t表示出來(lái),列出關(guān)于t的一元二次方程,求得t,進(jìn)而求得半徑;②⊙M與x軸相切,過(guò)點(diǎn)M作MN⊥OB于N,如圖所示,令M點(diǎn)橫坐標(biāo)為m,因?yàn)?/span>PN=2MN,列出關(guān)于m的一元二次方程,即可求出m,進(jìn)而求得⊙M的半徑.
(1)∵拋物線(xiàn)y=ax2+x+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)C(0,3)
∴
解得
∴該拋物線(xiàn)的解析式為:y=﹣x2+x+3
故答案為:y=﹣x2+x+3
(2)在拋物線(xiàn)上找到一點(diǎn)Q,使得△QCO是等邊三角形,過(guò)點(diǎn)Q作OM⊥OB于點(diǎn)M,過(guò)點(diǎn)Q作QN⊥OC于點(diǎn)N
∵△QCO是等邊三角形,OC=3
∴CN=
∴NQ=
即Q(,)
當(dāng)x=時(shí),y=﹣×()2+×+3=≠
∴Q(,)不在拋物線(xiàn)上
y=﹣x2+x+3
故答案為:不存在,理由見(jiàn)解析
(3)①⊙M與y軸相切,如圖所示
∵y=﹣x2+x+3
當(dāng)y=0時(shí),﹣x2+x+3=0
解得x1=-1,x2=4
∴B(4,0)
令直線(xiàn)BC的解析式為y=kx+b
解得
∴直線(xiàn)BC的解析式為
令M點(diǎn)橫坐標(biāo)為t
∵MP∥y軸,⊙M與y軸相切
∴t=﹣t2+t+3-
解得t=
⊙M的半徑為
②⊙M與x軸相切,過(guò)點(diǎn)M作MN⊥OB于N,如圖所示
令M點(diǎn)橫坐標(biāo)為m
∵PN=2MN
∴
解得m=1或m=4(舍去)
∴⊙M的半徑為:
故答案為:⊙M的半徑為或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2+mx+4m與x軸交于點(diǎn)A(,0)和點(diǎn)B(,0),與y軸交于點(diǎn)C,,若對(duì)稱(chēng)軸在y軸的右側(cè).
(1)求拋物線(xiàn)的解析式
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸上取一點(diǎn)M,使|MC-MB|的值最大;
(3)點(diǎn)Q是拋物線(xiàn)上任意一點(diǎn),過(guò)點(diǎn)Q作PQ⊥x軸交直線(xiàn)BC于點(diǎn)P,連接CQ,當(dāng)△CPQ是等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以等邊三角形ABC的BC邊為直徑畫(huà)半圓,分別交AB、AC于點(diǎn)E、D,DF是圓的切線(xiàn),過(guò)點(diǎn)F作BC的垂線(xiàn)交BC于點(diǎn)G.若AF的長(zhǎng)為2,則FG的長(zhǎng)為
A. 4 B. C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校7名學(xué)生在某次測(cè)量體溫(單位:℃)時(shí)得到如下數(shù)據(jù):36.3,36.4,36.5,36.7,36.6,36.5,36.5,對(duì)這組數(shù)據(jù)描述正確的是( )
A.眾數(shù)是36.5B.中位數(shù)是36.7
C.平均數(shù)是36.6D.方差是0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為檢測(cè)師生體溫,在校門(mén)安裝了某型號(hào)測(cè)溫門(mén).如圖為該測(cè)溫門(mén)截面示意圖,已知測(cè)溫門(mén)AD的頂部A處距地面高為2.2m,為了解自己的有效測(cè)溫區(qū)間.身高1.6m的小聰做了如下實(shí)驗(yàn):當(dāng)他在地面N處時(shí)測(cè)溫門(mén)開(kāi)始顯示額頭溫度,此時(shí)在額頭B處測(cè)得A的仰角為18°;在地面M處時(shí),測(cè)溫門(mén)停止顯示額頭溫度,此時(shí)在額頭C處測(cè)得A的仰角為60°.求小聰在地面的有效測(cè)溫區(qū)間MN的長(zhǎng)度.(額頭到地面的距離以身高計(jì),計(jì)算精確到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,Rt△OAB的直角頂點(diǎn)B在x軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若△ACD的面積是2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2,當(dāng)a≤x≤b時(shí)m≤y≤n,則下列說(shuō)法正確的是( 。
A.當(dāng)n﹣m=1時(shí),b﹣a有最小值
B.當(dāng)n﹣m=1時(shí),b﹣a有最大值
C.當(dāng)b﹣a=1時(shí),n﹣m無(wú)最小值
D.當(dāng)b﹣a=1時(shí),n﹣m有最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓分別交邊AC、AB于D、E兩點(diǎn),連接BD、DE.若BD平分∠ABC,則下列結(jié)論不一定成立的是( 。
A. BD⊥AC B. AC2=2ABAE C. △ADE是等腰三角形 D. BC=2AD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)錫市靈山勝境公司廠生產(chǎn)一種新的大佛紀(jì)念品,每件紀(jì)念品制造成本為18元,試銷(xiāo)過(guò)程發(fā)現(xiàn),每月銷(xiāo)量萬(wàn)件與銷(xiāo)售單價(jià)元之間的關(guān)系可以近似地看作一次函數(shù).
寫(xiě)出公司每月的利潤(rùn)萬(wàn)元與銷(xiāo)售單價(jià)元之間函數(shù)解析式;
當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),公司每月能夠獲得最大利潤(rùn)?最大利潤(rùn)是多少?
根據(jù)工商部門(mén)規(guī)定,這種紀(jì)念品的銷(xiāo)售單價(jià)不得高于32元如果公司要獲得每月不低于350萬(wàn)元的利潤(rùn),那么制造這種紀(jì)念品每月的最低制造成本需要多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com