【題目】已知拋物線yx2+mx+n的圖象經過點(﹣3,0),點(1,0

1)求拋物線解析式;(2)求拋物線的對稱軸和頂點坐標.

【答案】1)二次函數(shù)的解析式為yx2+2x3;(2)拋物線的對稱軸為直線x=﹣1,頂點坐標為:(﹣1,﹣4).

【解析】

1)利用待定系數(shù)法把(﹣3,0),(10)代入二次函數(shù)yx2+mx+n中,即可算出m、n的值,進而得到函數(shù)解析式;

2)將(1)中所得解析式化為頂點式,可得結果.

解:(1)∵二次函數(shù)yx2+mx+n過點(﹣3,0),C1,0),

解得:,

二次函數(shù)的解析式為yx2+2x3;

2)∵yx2+2x3=(x+124

∴拋物線的對稱軸為直線x=﹣1,頂點坐標為:(﹣1,﹣4).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=4,BC=6,B=60°,將ABC沿射線BC的方向平移,得到A′B′C′,再將A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離和旋轉角的度數(shù)分別為( 。

A.4,30° B.2,60° C.1,30° D.3,60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園手機現(xiàn)象越來越受到社會的關注.為了了解學生和家長對中學生帶手機的態(tài)度,某記者隨機調查了城區(qū)若干名學生和家長的看法,調查結果分為:贊成、無所謂、反對,并將調查結果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖:

根據(jù)以上圖表信息,解答下列問題:

1)統(tǒng)計表中的A________;

2)統(tǒng)計圖中表示家長贊成的圓心角的度數(shù)為________度;

3)從這次接受調查的學生中,隨機抽查一個,恰好是持反對態(tài)度的學生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點B作⊙O的切線交CD的延長線于點E,若BC=9,tan∠CDA=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC,ABAC10,BC16

1)作△ABC的外接圓O(用圓規(guī)和直尺作圖,不寫作法,但要保留作圖痕跡)

2)求OA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點和點為圓心,為圓心,大于號的長為半徑面狐,兩弧交于點:②做直線,且恰好經過點,與交于點,連接,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AD5AB8,點EDC上一個動點,把△ADE沿AE折疊,若點D的對應點D′,連接DB,以下結論中:①DB的最小值為3;②當DE時,△ABD′是等腰三角形;③當DE2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正確的有_____.(填上你認為正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將矩形ABCD繞點A順時針旋轉得到矩形AEFG,點EBD上;

1)求證:FDAB;(2)連接AF,求證:∠DAF=∠EFA

查看答案和解析>>

同步練習冊答案