【題目】如圖,在矩形ABCD中,AB=3BC=5,在CD上任取一點E,連接BE,將BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為(

A.B.C.D.

【答案】C

【解析】

CEx,由矩形的性質(zhì)得出ADBC5CDAB3,∠A=∠D90°.由折疊的性質(zhì)得出BFBC5,EFCExDECDCE3x.在RtABF中利用勾股定理求出AF的長度,進而求出DF的長度;然后在RtDEF根據(jù)勾股定理列出關于x的方程即可解決問題.

CEx
∵四邊形ABCD是矩形,
ADBC5CDAB3,∠A=∠D90°
∵將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,
BFBC5,EFCEx,DECDCE3x
RtABF中,由勾股定理得:AF2523216,
AF4,DF541
RtDEF中,由勾股定理得:
EF2DE2DF2,即x2=(3x212,
解得:x
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某班甲、乙、丙三位同學最近5次數(shù)學成績及其所在班級相應平均分的折線統(tǒng)計圖,則下列判斷錯誤的是( ).

A. 甲的數(shù)學成績高于班級平均分,且成績比較穩(wěn)定

B. 乙的數(shù)學成績在班級平均分附近波動,且比丙好

C. 丙的數(shù)學成績低于班級平均分,但成績逐次提高

D. 就甲、乙、丙三個人而言,乙的數(shù)學成績最不穩(wěn)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.

1求每行駛1千米純用電的費用;

2若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù) 的圖象分別為直線過點軸的垂線交于點,過點 軸的垂線交直線于點 ,過點 軸的垂線交 于點,過點 軸的垂線交直線 于點 ,…,依次進行下去,則點 的橫坐標為 _________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點

1)若點的橫坐標為,求的面積;(用含的式子表示)

2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點CCF平行于BAPQ于點F,連接AF

(1)求證:AED≌△CFD

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)圖象軸上方的部分沿軸翻折到軸下方,圖象的其余部分保持不變,翻折后的圖象與原圖象軸下方的部分組成一個形狀的新圖象,若直線與該新圖象有兩個公共點,則的取值范圍為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣3(a≠0)的頂點為E,該拋物線與x軸交于A、B兩點,與y軸交于點C,且BO=OC=3AO,直線y=﹣x+1與y軸交于點D.

(1)求拋物線的解析式;

(2)證明:△DBO∽△EBC;

(3)在拋物線的對稱軸上是否存在點P,使△PBC是等腰三角形?若存在,請直接寫出符合條件的P點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(點A在點B的右側),與其對稱軸交于點C.

(1)求點C的坐標;

(2)設二次函數(shù)圖像的頂點為D,點C與點D關于 x軸對稱,且△ACD的面積等于2.

① 求二次函數(shù)的解析式;

② 在該二次函數(shù)圖像的對稱軸上求一點P(寫出其坐標),使△PBC與△ACD相似.

查看答案和解析>>

同步練習冊答案