【題目】某校開設(shè)武術(shù)、舞蹈、剪紙三項活動課程,為了了解學(xué)生對這三項活動課程的興趣情況,隨機抽取了部分學(xué)生進行調(diào)查(每人從中只能選一頂),并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計圖,請你結(jié)合圖中信息解答問題.

1)將條形統(tǒng)計圖補充完整;

2)本次抽樣調(diào)查的樣本容量是   ;

3)在扇形統(tǒng)計圖中,計算女生喜歡剪紙活動課程人數(shù)對應(yīng)的圓心角度數(shù);

4)已知該校有1200名學(xué)生,請結(jié)合數(shù)據(jù)簡要分析該校學(xué)生對三項活動課程的興趣情況.

【答案】(1)見解析;(2)100;(3)115.2;(4600

【解析】

1)根據(jù)扇形統(tǒng)計圖可得出女生喜歡武術(shù)的占20%,利用條形圖中喜歡武術(shù)的女生有10人,即可求出女生總?cè)藬?shù),即可得出喜歡舞蹈的人數(shù);

2)根據(jù)(1)的計算結(jié)果再利用條形圖即可得出樣本容量;

3360°乘以女生中舞蹈類人數(shù)所占比例即可得;

4)用全校學(xué)生數(shù)×喜歡剪紙的學(xué)生在樣本中所占比例即可求出.

解:(1)被調(diào)查的女生人數(shù)為10÷20%50人,

則女生舞蹈類人數(shù)為50﹣(10+16)=24人,

補全圖形如下:

2)樣本容量為50+30+6+14100

故答案為100;

3)扇形圖中舞蹈類所占的圓心角度數(shù)為360°×115.2°,

故答案為115.2;

4)估計全校學(xué)生中喜歡剪紙的人數(shù)是1200×600,

全校喜歡剪紙的學(xué)生有600人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(2,﹣1),圖象與y軸交于點C(0,3),與x軸交于A、B兩點.

(1)求拋物線的解析式;

(2)設(shè)拋物線對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;

(3)點E為直線BC上的任意一點,過點Ex軸的垂線與拋物線交于點F,問是否存在點E使△DEF為直角三角形?若存在,求出點E坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是軸對稱圖形,且直線AC是否對稱軸,ABCD,則下列結(jié)論:①ACBD;②ADBC;③四邊形ABCD是菱形;④ABD≌△CDB.其中結(jié)論正確的序號是( 。

A. ①②③ B. ①②③④ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩同學(xué)用一副撲克牌中牌面數(shù)字分別是:3,4,564張牌做抽數(shù)學(xué)游戲.游戲規(guī)則是:將這4張牌的正面全部朝下,洗勻,從中隨機抽取一張,抽得的數(shù)作為十位上的數(shù)字,然后,將所抽的牌放回,正面全部朝下、洗勻,再從中隨機抽取一張,抽得的數(shù)作為個位上的數(shù)字,這樣就得到一個兩位數(shù).若這個兩位數(shù)小于45,則甲獲勝,否則乙獲勝.你認(rèn)為這個游戲公平嗎?請運用概率知識說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=+bx+c與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).

(1)求拋物線的解析式;

(2)在拋物線的對稱軸上是否存在點P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;

(3)點E線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,CBF的面積最大?求出CBF的最大面積及此時E點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC在平面直角坐標(biāo)系中的位置如圖所示.將ABC向右平移6個單位長度,再向下平移6個單位長度得到A1B1C1(圖中每個小方格邊長均為1個單位長度)

(1)在圖中畫出平移后的A1B1C1;

(2)直接寫出A1B1C1各頂點的坐標(biāo).

; ;

3)求出ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點ORtABC斜邊AB上的一點,以OA為半徑的⊙O與邊BC交于點D,與邊AC交于點E,連接AD,且AD平分∠BAC

1)試判斷BC與⊙O的位置關(guān)系,并說明理由;

2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是等邊ABC內(nèi)一點,AOB=110°,BOCBOC繞點C按順時針方向旋轉(zhuǎn)60°ADC,連接OD

1)求證COD是等邊三角形;

2)當(dāng)α=150°試判斷AOD的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D在邊BC上,∠C+BAD=∠DAC,過DDEABE,,則線段AC的長為_____

查看答案和解析>>

同步練習(xí)冊答案