【題目】如圖,AB是⊙O的直徑,且經(jīng)過弦CD的中點H,已知sinCDB=,BD=5,則AH的長為( 。

A. B. C. D.

【答案】B

【解析】連接OD,由垂徑定理得出ABCD,由三角函數(shù)求出BH=3,由勾股定理得出DH==4,設(shè)OH=x,則OD=OB=x+3,在RtODH中,由勾股定理得出方程,解方程即可.

連接OD,如圖所示:

AB是⊙O的直徑,且經(jīng)過弦CD的中點H,

ABCD,

∴∠OHD=BHD=90°,

sinCDB=,BD=5,

BH=3,

DH==4,

設(shè)OH=x,則OD=OB=x+3,

RtODH中,由勾股定理得:x2+42=(x+3)2,

解得:x=,

OH=,

AH=OA+OH=+3+=

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在矩形ABCD中,AB=2,BC=6,點E從點D出發(fā),沿DA方向以每秒1個單位的速度向點A運動,點F從點B出發(fā),沿射線AB以每秒3個單位的速度運動,當(dāng)點E運動到點A時,E、F兩點停止運動.連結(jié)BD,過點E作EH⊥BD,垂足為H,連結(jié)EF,交BD于點G,交BC于點M,連結(jié)CF.

(1)△CDE與△CBF相似嗎?為什么?

(2)求證:∠DBC=∠EFC;

(3)同線段GH的值是定值嗎?如果不是,請說明理由;如果是,求出這個定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】田忌賽馬的故事為我們所熟知.小亮與小齊學(xué)習(xí)概率初步知識后設(shè)計了如下游戲:小亮手中有方塊l0、8、6三張撲克牌,小齊手中有方塊9、7、5三張撲克牌.每人從各自手中取一張牌進行比較,數(shù)字大的為本“局”獲勝,每次取的牌不能放回.

(1)若每人隨機取手中的一張牌進行比賽,求小齊本“局”獲勝的概率;

(2)若比賽采用三局兩勝制,即勝2局或3局者為本次比賽獲勝者.當(dāng)小亮的三張牌出牌順序為先出6,再出8,最后出l0時,小齊隨機出牌應(yīng)對,求小齊本次比賽獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條河的北岸有兩個目標MN,現(xiàn)在位于它的對岸設(shè)定兩個觀測點AB.已知ABMN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.

(1)求點MAB的距離;(結(jié)果保留根號)

(2)B點又測得∠NBA=53°,求MN的長.(結(jié)果精確到1米)

(參考數(shù)據(jù):≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AM為⊙O的切線,A為切點,過⊙O上一點BBDAM于點D,BD交⊙OC,OC平分∠AOB.

(1)求∠AOB的度數(shù);

(2)若線段CD的長為2cm,求的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高鐵給我們的出行帶來了極大的方便.如圖,和諧號高鐵列車座椅后面的小桌板收起時,小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長BN與桌面寬AB的長度之和等于MN的長度.求小桌板桌面的寬度AB(結(jié)果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是三張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段AC的兩個端點均在小正方形的頂點上

1)在圖(1)中,點P在小正方形的頂點上,作出點P關(guān)于直線AC的對稱點Q

2)在圖(2)中,畫出一個以線段AC為對角線、面積為6的矩形ABCD,且點B和點D均在小正方形的頂點上

3)在圖(3)中,BAC的中點,作線段AB的垂直平分線,要求:①僅用無刻度直尺,且不能用直尺中的直角;②保留必要的作圖痕跡

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2m﹣1x+m2=0有兩個實數(shù)根x1x2

1)求實數(shù)m的取值范圍;

2)當(dāng)x12﹣x22=0時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知M1(3,2),N1(5,-1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對應(yīng)點).

(1)若M(-2,5),請直接寫出N點坐標.

(2)在(1)問的條件下,點N在拋物線上,求該拋物線對應(yīng)的函數(shù)解析式.

(3)在(2)問條件下,若拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負半軸上一動點,線段EC與線段BO相交于F,且OC︰OF=2︰,求m的值.

(4)在(3)問條件下,動點P從B點出發(fā),沿x軸正方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時BP的長度.

查看答案和解析>>

同步練習(xí)冊答案