【題目】如圖,已知A4,0),B3,3),以OA、AB為邊作OABC,則若一個反比例函數(shù)的圖象經(jīng)過C點,則這個反比例函數(shù)的表達式為_____

【答案】y=﹣.

【解析】

BBEx軸,過CCDx軸,可得∠BEA=∠CDO90°,由四邊形ABCO為平行四邊形,得到對邊平行且相等,利用兩直線平行得到一對同位角相等,利用AAS得到三角形ABE與三角形OCD全等,利用全等三角形對應邊相等得到AE=OD,BE=CD,確定出C的坐標,利用待定系數(shù)法確定出反比例函數(shù)的解析式,即可得出答案.

BBEx軸,過CCDx軸,可得∠BEA=∠CDO90°,

∵四邊形ABCO為平行四邊形,

ABOCABOC,

∴∠BAE=∠COD

在△ABE和△OCD中,

∴△ABE≌△OCDAAS),

BECD,AEOD,

A40),B3,3),

OA4,BEOE3

AEOAOE431,

ODAE1CDBE3,

C(﹣13),

設過點C的反比例解析式為y,

C(﹣1,3)代入得:k=﹣3,

則反比例解析式為y=﹣

故答案為:y=﹣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知四邊形ABCD和一點O,求作四邊形A′B′C′D′,使它與四邊形ABCD關于點O對稱;如果把O點移至如圖(2)所示位置,又該怎么作圖呢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】低碳生活,綠色出行”,20171,某公司向深圳市場新投放共享單車640.

(1)若1月份到4月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000.請問該公司4月份在深圳市新投放共享單車多少輛?

(2)考慮到自行車市場需求不斷增加,某商城準備用不超過70000元的資金再購進A,B兩種規(guī)格的自行車100輛,已知A型的進價為500/輛,售價為700/輛,B型車進價為1000/輛,售價為1300/輛。假設所進車輛全部售完,為了使利潤最大,該商城應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明畫了一個銳角,并作出了它的兩條高,兩高相交于點.小明說圖形中共有兩對相似三角形,他說的對嗎?請你判定一下,如果正確,就其中的一對進行說理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,要把破殘的圓片復制完整,已知弧上三點AB、C.

(1)用尺規(guī)作圖法,找出弧BAC所在圓的圓心O;(保留作圖痕跡,不寫作法)

(2)設△ABC為等腰三角形,底邊BC=10 cm,腰AB=6 cm,求圓片的半徑R;(結(jié)果保留根號)

(3)若在(2)題中的R滿足nRm(m、n為正整數(shù)),試估算mn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 拋物線 交于點A,過點A軸的平行線,分別交兩條拋物線于點B、C.則以下結(jié)論:① 無論取何值,的值總是正數(shù);② ;③ 當時,;④ 當時,0≤<1;⑤ 2AB3AC.其中正確結(jié)論的編號是______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BDABCD的對角線,按以下步驟作圖:分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于E,F兩點;作直線EF,分別交AD,BC于點M,N,連接BM,DN.若BD8,MN6,則ABCD的邊BC上的高為___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段AB上一點,分別以ABAC、CB為底作頂角為120°的等腰三角形,頂角頂點分別為D、E、F(點E、FAB的同側(cè),點D在另一側(cè))

(1)如圖1,若點CAB的中點,則∠AED   

(2)如圖2,若點C不是AB的中點

①求證:DEF為等邊三角形;

②連接CD,若∠ADC=90°,AB=3,請直接寫出EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,⊙E的半徑為5,點E(1,-4).

(1)求弦AB與弦CD的長;

(2)求點A,B坐標。

查看答案和解析>>

同步練習冊答案