【題目】在△ABC中,AB=AC,∠BAC=100°,點D在BC邊上,△ABD和△AFD關于直線AD對稱,∠FAC的平分線交BC于點G,連接FG.
(1)求∠DFG的度數(shù).
(2)設∠BAD=θ,當θ為何值時,△DFG為等腰三角形.
【答案】(1)∠DFG=80°;(2)當θ=10°,25°或40°時,△DFG為等腰三角形.
【解析】
(1)由軸對稱可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在證明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG的值;
(2)當GD=GF時,就可以得出∠GDF═80°,根據(jù)∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出結論;當DF=GF時,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,當DF=DG時,∠GDF=20°,就有40°+20°+40°+2θ=180°,從而求出結論.
解:(1)∵AB=AC,∠BAC=100°,
∴∠B=∠C=40°.
∵△ABD和△AFD關于直線AD對稱,
∴△ADB≌△ADF,
∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ,
∴AF=AC.
∵AG平分∠FAC,
∴∠FAG=∠CAG.
在△AGF和△AGC中,
,
∴△AGF≌△AGC(SAS),
∴∠AFG=∠C.
∵∠DFG=∠AFD+∠AFG,
∴∠DFG=∠B+∠C=40°+40°=80°.
答:∠DFG的度數(shù)為80°;
(2)當GD=GF時,
∴∠GDF=∠GFD=80°.
∵∠ADG=40°+θ,
∴40°+80°+40°+θ+θ=180°,
∴θ=10°.
當DF=GF時,
∴∠FDG=∠FGD.
∵∠DFG=80°,
∴∠FDG=∠FGD=50°.
∴40°+50°+40°+2θ=180°,
∴θ=25°.
當DF=DG時,
∴∠DFG=∠DGF=80°,
∴∠GDF=20°,
∴40°+20°+40°+2θ=180°,
∴θ=40°.
∴當θ=10°,25°或40°時,△DFG為等腰三角形;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC的外側作直線AP,點C關于直線AP的對稱點為點D,連接AD,BD,其中BD交直線AP于點E.
(1)依題意補全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);
(3)連結CE,寫出AE, BE, CE之間的數(shù)量關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】雪楓中學食堂一工人在每天擺碗的過程中總結出,如果你給他報出桌面上碗的高度,他能說出碗的個數(shù),你給他報出碗的個數(shù)他能說出確的高度,真可謂數(shù)學就在身邊,缺乏慧眼發(fā)現(xiàn):
(1)求整齊疊放在桌面上碗的高度y(cm)與碗數(shù)x(個)之間的一次函數(shù)解析式(不要求寫出自變量 x的取值范圍):
(2)若桌面上有12個碗,整齊疊放成一摞,求出它的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習概率的課堂上,老師提出問題:一口袋裝有除顏色外均相同的2個紅球1個白球和1個籃球,小剛和小明想通過摸球來決定誰去看電影,同學甲設計了如下的方案:第一次隨機從口袋中摸出一球(不放回);第二次再任意摸出一球,兩人勝負規(guī)則如下:摸到“一紅一白”,則小剛看電影;摸到“一白一藍”,則小明看電影.
(1)同學甲的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)你若認為這個方案不公平,那么請你改變一下規(guī)則,設計一個公平的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為△ABC內的一點,D,E,F分別是點P關于邊AB,BC,CA所在直線的對稱點,那么∠ADB+∠BEC+∠CFA=______°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,點O時∠CAB、∠ACB平分線的交點,且BC=8 cm,AB=6 cm,AC=10 m,則點O到邊AB的距離為( )
A.1 cmB.2 cmC.3 cmD.4 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與x軸交于點B,與y軸交于點C,二次函數(shù)的圖象經(jīng)過點B,C兩點,且與x軸的負半軸交于點A,動點D在直線BC下方的二次函數(shù)圖象上.
(1)求二次函數(shù)的表達式;
(2)如圖1,連接DC,DB,設△BCD的面積為S,求S的最大值;
(3)如圖2,過點D作DM⊥BC于點M,是否存在點D,使得△CDM中的某個角恰好等于∠ABC的2倍?若存在,直接寫出點D的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△AOB是邊長為2的等邊三角形,將△AOB繞著點B按順時針方向旋轉得到△DCB,使得點D落在x軸的正半軸上,連接OC,AD.
(1)求證:OC=AD;
(2)求OC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為3的⊙O中,AB是直徑,AC是弦,且AC=4.過點O作直徑DE⊥AC,垂足為點P,過點B的直線交AC的延長線和DE的延長線于點F、G.
(1)求線段AP、CB的長;
(2)若OG=9,求證:FG是⊙O的切線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com