【題目】數(shù)學(xué)拓展課程《玩轉(zhuǎn)學(xué)具》課堂中,小陸同學(xué)發(fā)現(xiàn):一副三角板中,含45°的三角板的斜邊與含30°的三角板的長直角邊相等,于是,小陸同學(xué)提出一個(gè)問題:如圖,將一副三角板直角頂點(diǎn)重合拼放在一起,點(diǎn)B,C,E在同一直線上,若BC=2,求AF的長.
請你運(yùn)用所學(xué)的數(shù)學(xué)知識解決這個(gè)問題.

【答案】解:在Rt△ABC中,BC=2,∠A=30°,
AC= =2 ,
則EF=AC=2 ,
∵∠E=45°,
∴FC=EFsinE= ,
∴AF=AC﹣FC=2
【解析】根據(jù)正切的定義求出AC,根據(jù)正弦的定義求出CF,計(jì)算即可.本題考查的是特殊角的三角函數(shù)值的應(yīng)用,掌握銳角三角函數(shù)的概念、熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.
【考點(diǎn)精析】本題主要考查了特殊角的三角函數(shù)值的相關(guān)知識點(diǎn),需要掌握分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算結(jié)果正確的是( 。
A.2a3+a3=3a6
B.(﹣a)2?a3=﹣a6
C.(﹣?)﹣2=4
D.(﹣2)0=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,對角線AC,BD相交于點(diǎn)O,DE平分∠ADO交AC于點(diǎn)E,把△ADE沿AD翻折,得到△ADE′,點(diǎn)F是DE的中點(diǎn),連接AF,BF,E′F.若AE= .則四邊形ABFE′的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有三個(gè)內(nèi)角相等的四邊形叫三等角四邊形.

(1)三等角四邊形ABCD中,∠A=∠B=∠C,求∠A的取值范圍;
(2)如圖,折疊平行四邊形紙片DEBF,使頂點(diǎn)E,F(xiàn)分別落在邊BE,BF上的點(diǎn)A,C處,折痕分別為DG,DH.求證:四邊形ABCD是三等角四邊形.
(3)三等角四邊形ABCD中,∠A=∠B=∠C,若CB=CD=4,則當(dāng)AD的長為何值時(shí),AB的長最大,其最大值是多少?并求此時(shí)對角線AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),F(xiàn)為DE的中點(diǎn),且∠BFC=90°.

(1)當(dāng)E為BC中點(diǎn)時(shí),求證:△BCF≌△DEC;
(2)當(dāng)BE=2EC時(shí),求 的值;
(3)設(shè)CE=1,BE=n,作點(diǎn)C關(guān)于DE的對稱點(diǎn)C′,連結(jié)FC′,AF,若點(diǎn)C′到AF的距離是 ,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司有豪華和普通兩種客車在甲、乙兩市之間運(yùn)營.已知每隔1h有一輛豪華客車從甲城開往乙城,如圖所示,是第一輛豪華客車離開甲市的路程(km)與運(yùn)行時(shí)間(h)的函數(shù)圖像,是一輛從乙市開往甲市的普通客車距甲市的路程(km)與運(yùn)行時(shí)間(h)的函數(shù)圖像.請根據(jù)圖中提供的信息,解答下列問題:

(1)點(diǎn)的橫坐標(biāo)0.5的意義是普通客車發(fā)車時(shí)間比第一輛豪華客車發(fā)車時(shí)間 ,點(diǎn)的縱坐標(biāo) 480的意義是 .

(2)請你在原圖中直接畫出第二輛豪華客車離開甲市的路程(km)與運(yùn)行時(shí)間(h)的函數(shù)圖像;

(3)若普通客車的速度為80 km/h.

①求的函數(shù)表達(dá)式,并寫出自變量的取值范圍;

②求第二輛豪華客車出發(fā)后多長時(shí)間與普通客車相遇;

③寫出這輛普通客車在行駛途中與迎面而來的相鄰兩輛豪華客車相遇的間隔時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為1,點(diǎn)P為正方形內(nèi)一動點(diǎn),若點(diǎn)M在AB上,且滿足△PBC∽△PAM,延長BP交AD于點(diǎn)N,連結(jié)CM.

(1)如圖一,若點(diǎn)M在線段AB上,求證:AP⊥BN;AM=AN;
(2)①如圖二,在點(diǎn)P運(yùn)動過程中,滿足△PBC∽△PAM的點(diǎn)M在AB的延長線上時(shí),AP⊥BN和AM=AN是否成立?(不需說明理由)
②是否存在滿足條件的點(diǎn)P,使得PC= ?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。
A.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動后,5點(diǎn)朝上是必然事件
B.審查書稿中有哪些學(xué)科性錯(cuò)誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定
D.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)青年志愿者小分隊(duì)年齡情況如下表所示:

年齡(歲)

18

19

20

21

22

人數(shù)

2

5

2

2

1

則這12名隊(duì)員年齡的眾數(shù)、中位數(shù)分別是( 。
A.2,20歲
B.2,19歲
C.19歲,20歲
D.19歲,19歲

查看答案和解析>>

同步練習(xí)冊答案