【題目】在矩形ABCD中,,點(diǎn)GH分別在邊AB,DC上,且HA=HG,點(diǎn)EAB邊上的一個(gè)動(dòng)點(diǎn),連接HE,把△AHE沿直線HE翻折得到△FHE

1)如圖1,當(dāng)DH=DA時(shí),

填空:∠HGA= 度;

EF∥HG,求∠AHE的度數(shù),并求此時(shí)a的最小值;

2)如圖3,∠AEH=60°EG=2BG,連接FG,交邊FG,交邊DC于點(diǎn)P,且FG⊥AB,G為垂足,求a的值.

【答案】1)①45;②當(dāng)∠AHE為銳角時(shí),∠AHE=22.5°時(shí),a的最小值是2;當(dāng)∠AHE為鈍角時(shí),∠AHE=112.5°時(shí),a的最小值是;(2.

【解析】

1)①∵四邊形ABCD是矩形,∴∠ADH=90°

DH=DA,∴∠DAH=DHA=45°.∴∠HAE=45°

HA=HG,∴∠HAE=HGA=45°

②分兩種情況討論:

第一種情況:如答圖1,∠AHE為銳角時(shí),

∵∠HAG=HGA=45°,∴∠AHG=90°

由折疊可知:∠HAE=F=45°,∠AHE=FHE

EFHG,∴∠FHG=F=45°

∴∠AHF=AHGFHG=45°,即∠AHE+FHE=45°

∴∠AHE=22.5°

此時(shí),當(dāng)BG重合時(shí),a的值最小,最小值是2

第二種情況:如答圖2,∠AHE為鈍角時(shí),

EFHG,∴∠HGA=FEA=45°,即∠AEH+FEH=45°

由折疊可知:∠AEH=FEH,∴∠AEH=FEH=22.5°

EFHG,∴∠GHE=FEH=22.5°

∴∠AHE=90°+22.5°=112.5°

此時(shí),當(dāng)BE重合時(shí),a的值最小,

設(shè)DH=DA=x,則AH=CH=x

RtAHG中,∠AHG=90°,由勾股定理得:AG=AH=2x,

∵∠AEH=FEH,∠GHE=FEH,∴∠AEH=GHE.∴GH=GE=x

AB=AE=2x+x

a的最小值是

綜上所述,當(dāng)∠AHE為銳角時(shí),∠AHE=22.5°時(shí),a的最小值是2;當(dāng)∠AHE為鈍角時(shí),∠AHE=112.5°時(shí),a的最小值是

2)如答圖3:過點(diǎn)HHQABQ,則∠AQH=GQH=90°,

在矩形ABCD中,∠D=DAQ=90°,

∴∠D=DAQ=AQH=90°

∴四邊形DAQH為矩形.∴AD=HQ

設(shè)AD=x,GB=y,則HQ=x,EG=2y,

由折疊可知:∠AEH=FEH=60°,∴∠FEG=60°

RtEFG中,EG=EF×cos60°2y,

RtHQE中, ,

HA=HG,HQAB,∴AQ=GQ=

AE=AQ+QE=

由折疊可知:AE=EF,即,即

AB=2AQ+GB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019423日是第24個(gè)世界讀書日.為了弘揚(yáng)中華傳統(tǒng)文化,我縣某學(xué)校舉辦了讓讀書成為習(xí)慣,讓書香飄滿校園主題活動(dòng),為此特為每個(gè)班級(jí)訂購了一批新的圖書.初一(1)班訂購老舍文集4套和四大名著2套,總費(fèi)用為480元;初一(2)班訂購老舍文集2套和四大名著3套,總費(fèi)用為520元.

(1)求老舍文集和四大名著每套各是多少元?

(2)學(xué)校準(zhǔn)備再購買老舍文集和四大名著共20套,總費(fèi)用不超過1720元,購買老舍文集的數(shù)量不超過四大名著的3倍,問學(xué)校有幾種購買方案,請(qǐng)你設(shè)計(jì)出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,是用3根相同火柴棒拼成的一個(gè)三角圖形,記為一個(gè)基本圖形,將此基本圖形不斷的復(fù)制,使得相鄰的兩個(gè)基本圖形的邊重合,這樣得到圖②,圖③

1)觀察以上圖形,圖④中所用火柴棒的根數(shù)為_________,

猜想:在圖n中,所用火柴棒的根數(shù)為_________(用n表示);

2)如圖,將圖n放在直角坐標(biāo)系中,設(shè)其中第一個(gè)基本圖形的中心O1的坐標(biāo)為(),則=_________;的坐標(biāo)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】安全教育,警鐘長鳴,某校隨機(jī)抽取了部分學(xué)生就安全知識(shí)的了解情況進(jìn)行問卷調(diào)查,其中很好”“較好”“一般”“較差四類學(xué)生分別占調(diào)查學(xué)生數(shù)的25%,50%20%,5%.

(1)選擇合適的統(tǒng)計(jì)圖描述上面的數(shù)據(jù);

(2)根據(jù)上面的調(diào)查結(jié)果,若該校有1400名學(xué)生,則對(duì)安全知識(shí)了解較差的學(xué)生有多少名?

(3)根據(jù)以上信息,請(qǐng)?zhí)岢鲆粭l合理化建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是⊙的直徑,弦交于點(diǎn),過點(diǎn)作⊙的切線與的延長線交于點(diǎn), 交直線于點(diǎn)

)若,求證: 是⊙的切線;

)如果 的中點(diǎn),求直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題:

已知在平面內(nèi)有兩點(diǎn),,其兩點(diǎn)間的距離公式為;同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡化為.

1)已知點(diǎn)A2,4),B-2,1),則AB=__________;

2)已知點(diǎn)CD在平行于y軸的直線上,點(diǎn)C的縱坐標(biāo)為4,點(diǎn)D的縱坐標(biāo)為-2,則CD=__________

3)已知點(diǎn)P3,1)和(1)中的點(diǎn)A,B,判斷線段PA,PBAB中哪兩條線段的長是相等的?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,平分平分,相交于點(diǎn),

1)求證:四邊形是菱形;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣1,且經(jīng)A1,0)、

B0,﹣3)兩點(diǎn).(1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸x=﹣1上,是否存在點(diǎn)M,使它到點(diǎn)A的距離與到點(diǎn)B的距離之和最小,如果存在求出點(diǎn)M的坐標(biāo),如果不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)如圖1,、分別平分、.試說明:;

2)如圖2,若,,、分別平分,那么 (只要直接填上正確結(jié)論即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案