【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點,AE∥BC.
(1)作∠ADC的平分線DF,與AE交于點F;(用尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)的條件下,若AD=2,求DF的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC=4,AB=CD,BD=6,點E從D點出發(fā),以每秒1個單位的速度沿DA向點A勻速移動,點F從點C出發(fā),以每秒3個單位的速度沿C→B→C作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當有一個點到達終點時,其余兩點也隨之停止運動.
(1)試證明:AD∥BC.
(2)在移動過程中,小芹發(fā)現(xiàn)當點G的運動速度取某個值時,有△DEG與△BFG全等的情況出現(xiàn),請你探究當點G的運動速度取哪些值時,△DEG與△BFG全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我校圖書館大樓工程在招標時,接到甲乙兩個工程隊的投標書,每施工一個月,需付甲工程隊工程款16萬元,付乙工程隊12萬元。工程領(lǐng)導小組根據(jù)甲乙兩隊的投標書測算,可有三種施工方案:
(1)甲隊單獨完成此項工程剛好如期完工;
(2)乙隊單獨完成此項工程要比規(guī)定工期多用3個月;
(3)若甲乙兩隊合作2個月,剩下的工程由乙隊獨做也正好如期完工。
你覺得哪一種施工方案最節(jié)省工程款,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A在x軸上,△ABO是直角三角形,∠ABO=90°,點B的坐標為(﹣1,2),將△ABO繞原點O順時針旋轉(zhuǎn)90°得到△A1B1O,則過A1,B兩點的直線解析式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向 A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二: 同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E、F分別是BC、CD上的點.且∠EAF=60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學探究此問題的方法是,延長FD到點G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應是 ;
探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說明理由;
實際應用:
如圖3,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進1.5小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知關(guān)于x的方程2x2﹣mx﹣m2=0有一個根是1,求m的值;
(2)已知關(guān)于x的方程(2x﹣m)(mx+1)=(3x+1)(mx﹣1)有一個根是0,求另一個根和m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)(1)閱讀理解:
如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;
(2)問題解決:
如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證BE+CF>EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A(﹣4,2)、B(n,﹣4)兩點是一次函數(shù)y=kx+b和反比例函數(shù)y=圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)觀察圖象,直接寫出不等式kx+b﹣>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com