【題目】如圖1,點(diǎn)O為正方形ABCD 的中心,E為AB 邊上一點(diǎn),F為BC邊上一點(diǎn),△EBF的周長(zhǎng)等于 BC 的長(zhǎng).
(1)求∠EOF 的度數(shù).
(2)連接 OA、OC(如圖2).求證:△AOE∽△CFO.
(3)若OE=OF,求的值.
【答案】(1)45°;(2)證明見解析;(3)
【解析】分析:(1)、在BC上取一點(diǎn)G,使得CG=BE,連接OB、OC、OG,然后證明△OBE和△OCG全等,從而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根據(jù)三角形的周長(zhǎng)得出EF=GF,從而得出△FOE和△GOF全等,得出∠EOF的度數(shù);(2)、連接OA,根據(jù)點(diǎn)O為正方形ABCD的中心得出∠OAE=∠FCO=45°,結(jié)合∠BOE=∠COG得出∠AEO=∠COF,從而得出三角形相似;(3)、根據(jù)相似得出線段比,根據(jù)相似比求出AE和CO的關(guān)系,CF和AO的關(guān)系,從而得出答案.
詳解:解:(1)、如圖,在BC上取一點(diǎn)G,使得CG=BE,連接OB、OC、OG.
∵點(diǎn)O為正方形ABCD的中心, ∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.
∴△OBE≌△OCG(SAS). ∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.
∴∠EOG=90°,∵△BEF的周長(zhǎng)等于BC的長(zhǎng),
∴ EF=GF. ∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.
(2)、連接OA.∵ 點(diǎn)O為正方形ABCD的中心, ∴∠OAE=∠FCO=45°.
∵∠BOE=∠COG, ∠AEO=∠BOE+∠OBE=∠BOE+45°,
∠COF=∠COG+∠GOF=∠COG+45°. ∴ ∠AEO=∠COF,且∠OAE=∠FCO.
∴ △AOE∽△CFO.
(3)、∵△AOE∽△CFO,∴==.即AE= ×CO,CF=AO÷.
∵OE=OF,∴=.∴AE=CO,CF=AO. ∴=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售10臺(tái)A型和20臺(tái)B型電腦的利潤為4000元,銷售20臺(tái)A型和10臺(tái)B型電腦的利潤為3500元.
(1)求每臺(tái)A型電腦和B型電腦的銷售利潤;
(2)該商店計(jì)劃一次購進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)m(0<m<100)元,且限定商店最多購進(jìn)A型電腦70臺(tái).若商店保持兩種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寒假即將到來,外出旅游的人數(shù)逐漸增多,對(duì)旅行包的需求也將增多,某店準(zhǔn)備到生產(chǎn)廠家購買旅行包,該廠有甲、乙兩種新型旅行包.若購進(jìn)10個(gè)甲種旅行包和20個(gè)乙種旅行包共需5600元,若購進(jìn)20個(gè)甲種旅行包和10個(gè)乙種旅行包共需5200元.
(1)甲、乙兩種旅行包的進(jìn)價(jià)分別是多少元?
(2)若該店恰好用了7000元購買旅行包;
①設(shè)該店購買了m個(gè)甲種旅行包,求該店購買乙種旅行包的個(gè)數(shù);
②若該店將甲種旅行包的售價(jià)定為298元,乙種旅行包的售價(jià)定為325元,則當(dāng)該店怎么樣進(jìn)貨,才能獲得最大利潤,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中,,,.點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度/秒的速度沿的方向運(yùn)動(dòng),點(diǎn)從點(diǎn)沿的方向與點(diǎn)同時(shí)出發(fā);當(dāng)點(diǎn)第一次回到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng);用(秒)表示運(yùn)動(dòng)時(shí)間.
(1)當(dāng)為多少時(shí),是的中點(diǎn);
(2)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長(zhǎng)度/秒,是否存在的值,使得;
(3)若點(diǎn)的運(yùn)動(dòng)速度是個(gè)單位長(zhǎng)度/秒,當(dāng)點(diǎn),是邊上的三等分點(diǎn)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)停車難已成為合肥城市病之一,主要表現(xiàn)在居住停車位不足,停車資源結(jié)構(gòu)性失衡,中心城區(qū)供需差距大等等.如圖是張老師的車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,已知小汽車車門寬AO為 1.2 米,當(dāng)車門打開角度∠AOB為40°時(shí),車門是否會(huì)碰到墻?請(qǐng)說明理由.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某湖上風(fēng)景區(qū)有兩個(gè)觀望點(diǎn)A,C和兩個(gè)度假村B、D;度假村D在C正西方向,度假村B在C的南偏東方向,度假村B到兩個(gè)觀望點(diǎn)的距離都等于2km.
(1)在圖中標(biāo)出A、B、C、D的位置,并寫出道路CD與CB的夾角.
(2)如果度假村D到C是直公路,長(zhǎng)為1km,D到A是環(huán)湖路,度假村B到兩個(gè)觀望點(diǎn)的總路程等于度假村D到兩個(gè)觀望點(diǎn)的總路程.求出環(huán)湖路的長(zhǎng).
(3)根據(jù)題目中的條件,能夠判定嗎?若能,請(qǐng)寫出判斷過程;若不能,請(qǐng)你添加一個(gè)條件,判定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校在休息日用藥熏消毒法對(duì)教室進(jìn)行消毒. 已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間t(h)成正比;藥物釋放完畢后,y與t之間的函數(shù)解析式為y=(a為常數(shù)),如圖所示. 根據(jù)圖中提供的信息,解答下列問題:
(1)寫出從釋放藥物開始,y與t之間的兩個(gè)函數(shù)解析式及相應(yīng)的自變量取值范圍;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.25mg以下時(shí),學(xué)生方可進(jìn)入教室,那么藥物釋放開始,至少需要經(jīng)過多少小時(shí),學(xué)生才能進(jìn)入教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市移動(dòng)通訊公司開設(shè)了兩種通訊業(yè)務(wù),A類是固定用戶:先繳50元月租費(fèi),然后每通話1分鐘再付話費(fèi)0.4元;B類是“神州行”用戶:使用者不繳月租費(fèi),每通話1分鐘付話費(fèi)0.6元(這里均指市內(nèi)通話)。如果一個(gè)月內(nèi)通話時(shí)間為x分鐘,分別設(shè)A類和B類兩種通訊方式的費(fèi)用為y元和y元,
(1)寫出y、y與x之間的函數(shù)關(guān)系式。
(2)一個(gè)月內(nèi)通話多少分鐘,用戶選擇A類合算?B類呢?
(3)若某人預(yù)計(jì)使用話費(fèi)150元,他應(yīng)選擇哪種方式合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=10,AB=,∠ABC=30°,點(diǎn)P在直線AC上,點(diǎn)P到直線AB的距離為1,則CP的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com