【題目】如圖,中,,以為坐標原點建立直角堅標系,使點在軸正半軸上,,,點為邊的中點,拋物線的頂點是原點,且經(jīng)過點
(1)填空:直線的解析式為 ;拋物線的解析式為 .
(2)現(xiàn)將該拋物線沿著線段移動,使其頂點始終在線段上(包括點,),拋物線與軸的交點為,與邊的交點為;
①設的面積為,求的取值范圍;
②是否存在這樣的點,使四邊形為平行四邊形?如存在,求出此時拋物線的解析式;如不存在,說明理由.
【答案】(1)y=2x,y=x2 ;(2)①,②存在,
【解析】
(1)本題須先求出點C的坐標然后即可求出直線OC的解析式和拋物線的解析式;
(2)①根據(jù)拋物線的移動規(guī)律設出拋物線的解析式,求出△BOE的面積S與m的關系,再根據(jù)m的取值范圍即可求出S的取值范圍;
②根據(jù)平行四邊形的性質(zhì)即可得出m的值.
解:(1)∵OA=2,AB=8,點C為AB邊的中點,
∴點C的坐標為(2,4)點,
設直線的解析式為y=kx
則4=2k,解得k=2
∴直線的解析式為y=2x,
設拋物線的解析式為y=kx2
則4=4k,解得k=1
∴拋物線的解析式為y=x2;
(2)設移動后拋物線的解析式為y=(x-m)2+2m,
① ∵,
,
又∵,
∴;
②存在點D,使四邊形BDOC為平行四邊形,
當OD=BC,四邊形BDOC為平行四邊形,
∴OD=BC==4,
則可得x=0時y=4,
∴m2+2m=4,
∴(m+1)2=5,
解得或(舍去),
所以,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】某校“心靈信箱”的設立,為師、生之間的溝通開設了一個書面交流的渠道.為了解九年級學生對“心靈信箱”開通兩年來的使用情況,某課題組對該校九年級全體學生進行了一次問卷調(diào)查,并根據(jù)調(diào)查結果繪制了如下尚不完整的統(tǒng)計圖.
兩年來,你通過“心靈信箱”給老師總共投遞過幾封信? |
A.沒投過 B.一封 C.兩封 D.三封或以上 |
根據(jù)以上圖表,解答下列問題:
(1)該校九年級學生共有____人;
(2)學生調(diào)查結果扇形統(tǒng)計圖中,扇形的圓心角度數(shù)是______;
(3)請你補全條形統(tǒng)計圖;
(4)根據(jù)調(diào)查結果可以推斷:兩年來,該校九年級學生通過“心靈信箱”投遞出信件總數(shù)至少有_____封.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,BC=AC,∠ACB=90°,將△ABC繞著點C順時針旋轉α(0≤α≤90°),得到△EFC,EF與AB、AC相交于點D、H,FC與AB相交于點G、AC相交于點D、H,FC與AB相較于點G.
(1)求證:△GBC≌△HEC;
(2)在旋轉過程中,當α是多少度時四邊形BCED可以是某種特殊的平行四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將一塊等腰直角三角板放在第二象限,斜靠在兩坐標軸上,點坐標為,點的坐標為,一次函數(shù)的圖象經(jīng)過點B、C,反比例函數(shù)的圖象也經(jīng)過點.
(1)求反比例函數(shù)和一次函數(shù)的關系式;
(2)觀察圖象直接寫出圖象在第二象限時,的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(3,3)、B(﹣1,0)、C(4,0).
(1)經(jīng)過平移,可使△ABC的頂點A與坐標原點O重合,則點C的對應點C1的坐標為 ;(不用畫圖)
(2)在圖中畫出將△ABC繞點B逆時針旋轉90°得到的△A′BC′;
(3)以點A為位似中心放大△ABC,得到△AB2C2,使S△ABC:S=1:4,在圖中畫出△AB2C2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是小莉在一次放風箏活動中某時段的示意圖,她在A處時的風箏線(整個過程中風箏線近似地看作直線)與水平線構成37°角,線段AA1表示小紅身高1.5米.當她從點A跑動4米到達點B處時,風箏線與水平線構成60°角,此時風箏到達點E處,風箏的水平移動距離CF為8米,這一過程中風箏線的長度保持不變,求風箏原來的高度C1D.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠D=120°,將菱形翻折,使點A落在邊CD的中點E處,折痕交邊AD,AB于點G,F,則AF的長為___
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù)滿足:對于自變量的取值范圍內(nèi)的任意,,
(1)若,都有,則稱是增函數(shù);
(2)若,都有,則稱是減函數(shù).
例題:證明函數(shù)是減函數(shù).
證明:設,
.
∵,∴,.∴.即.
∴.∴函數(shù)()是減函數(shù).
根據(jù)以上材料,解答下面的問題:
己知函數(shù)(),
(1)計算:_______,_______;
(2)猜想:函數(shù)()是_______函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣3).
(1)求這個拋物線的解析式;
(2)拋物線與x軸的另一交點為C,拋物線的頂點為D,判斷△CBD的形狀;
(3)直線BN∥x軸,交拋物線于另一點N,點P是直線BN下方的拋物線上的一個動點(點P不與點B和點N重合),過點P作x軸的垂線,交直線BC于點Q,當四邊形BPNQ的面積最大時,求出點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com