精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系xOy中,點A、B分別在x軸、y軸的正半軸上運動,點M為線段AB的中點.點D、E分別在x軸、y軸的負半軸上運動,且DEAB10.以DE為邊在第三象限內作正方形DGFE,則線段MG長度的最大值為_____

【答案】10+5

【解析】

DE的中點N,連結ON、NGOM.根據勾股定理可得.在點MG之間總有MGMO+ON+NG(如圖1),M、O、NG四點共線,此時等號成立(如圖2).可得線段MG的最大值.

如圖1,取DE的中點N,連結ON、NG、OM.

∵∠AOB=90°,

∴OM=AB=5.

同理ON=5.

∵正方形DGFE,N為DE中點,DE=10,

在點M與G之間總有MG≤MO+ON+NG(如圖1),

如圖2,由于∠DNG的大小為定值,只要∠DON=∠DNG,且M、N關于點O中心對稱時,M、O、N、G四點共線,此時等號成立,

∴線段MG取最大值10+5

故答案為:10+5

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知直線分別交軸、軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC 軸于點C,交拋物線于點D.

(1)若拋物線的解析式為,設其頂點為M,其對稱軸交AB于點N.

①求點M、N的坐標;

②是否存在點P,使四邊形MNPD為菱形?并說明理由;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,O過正方形ABCD的頂點AD且與邊BC相切于點E,分別交AB、DC于點M、N.動點P在⊙O或正方形ABCD的邊上以每秒一個單位的速度做連續(xù)勻速運動.設運動的時間為x,圓心OP點的距離為y,圖2記錄了一段時間里yx的函數關系,在這段時間里P點的運動路徑為( )

A. D點出發(fā),沿弧DA→AM→線段BM→線段BC

B. B點出發(fā),沿線段BC→線段CN→ND→DA

C. A點出發(fā),沿弧AM→線段BM→線段BC→線段CN

D. C點出發(fā),沿線段CN→ND→DA→線段AB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E是邊AD上一點,過點EEFBC,垂足為點F,將△BEF繞著點E逆時針旋轉,使點B落在邊BC上的點N處,點F落在邊DC上的點M處,若點M恰好是邊CD的中點,那么 的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線OA與反比例函數()的圖像交于點A(3,3),將直線OA沿y軸向下平移,與反比例函數()的圖像交于點B(6,m),與y軸交于點C.

(1)求直線BC的解析式;

(2)求△ABC的面積

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】黃河,既是一條源遠流長、波瀾壯闊的自然河,又是一條孕育中華民族燦爛文明的母親河.數學課外實踐活動中,小林和同學們在黃河南岸小路上的A,B兩點處,用測角儀分別對北岸的觀景亭D進行測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=200米,求觀景亭D到小路AC的距離約為多少米?(結果精確到1米,參考數據:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標原點,tan∠AOC=,反比例函數y=的圖象經過點C,與AB交于點D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】廣安市某樓盤準備以每平方米6000元的均價對外銷售,由于國務院有關房地產的新政策出臺后,購房者持幣觀望,房地產開發(fā)商為了加快資金周轉,對價格經過兩次下調后,決定以每平方米4860元的均價開盤銷售.

1)求平均每次下調的百分率.

2)某人準備以開盤價均價購買一套100平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案以供選擇:9.8折銷售;不打折,一次性送裝修費每平方米80元,試問哪種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系 xOy 中,已知正比例函數 y1=﹣2x 的圖象與反比例函數 y2的圖象交于 A(﹣1,a),B 兩點.

(1)求出反比例函數的解析式及點 B 的坐標;

(2)觀察圖象,請直接寫出滿足 y≤2 的取值范圍;

(3) P 是第四象限內反比例函數的圖象上一點,若POB 的面積為 1,請直接寫出點 P的橫坐標.

查看答案和解析>>

同步練習冊答案