【題目】已知二次函數(shù)的圖象如圖所示,有下列4個結(jié)論:①;②a-b+c>0;③;④,⑤a+b≥am2+bm其中正確的結(jié)論有()
A.1個B.2個C.3個D.4個
【答案】D
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解:①∵圖象開口向下,與y軸交于正半軸,對稱軸在y軸右側(cè),
∴a<0,c>0,,
∴b>0,
∴abc<0,故正確;
②當x=1時,y<0,即ab+c<0,故錯誤;
③對稱軸x=,
∴-b=2a
∴2a+b=0,故正確;
④圖象與x軸有2個交點,依據(jù)根的判別式可知b24ac>0,故正確;
⑤當x=1時,y的最大值為a+b+c,
當x=m時,y=am2+bm+c,
∵a+b+c≥am2+bm+c,
∴a+b≥am2+bm,故正確,
綜上所述,正確的結(jié)論有4個,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸分別交于、兩點,與軸交于點,.則由拋物線的特征寫出如下結(jié)論:①;②;③;④.其中正確的個數(shù)是()
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,菱形的頂點與原點重合,與軸的正半軸重合,,,動點、分別從、兩點同時出發(fā),沿方向以每秒1個單位,沿,方向以每秒2個單位運動,運動時間為,當運動到點時,兩點同時停止運動,連接、,請解決一下問題:
(1)求菱形的面積
(2)若為直角三角形,求運動時間的值;
(3)是否存在的面積是菱形面積的,若存在,求出滿足條件的的值,不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,點D,E分別在邊AB,AC上,將△ADE沿直線DE翻折,點A的對應(yīng)點在邊AB上,聯(lián)結(jié)A′C,如果A′C=A′A,那么BD=___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-6x+8.求:
(1)拋物線與x軸和y軸相交的交點坐標;
(2)拋物線的頂點坐標;
(3)畫出此拋物線圖象,利用圖象回答下列問題:
①方程x2-6x+8=0的解是什么?
②x取什么值時,函數(shù)值大于0?
③x取什么值時,函數(shù)值小于0?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y =-x2+(k-2)x+k+1.
(1)求證:該函數(shù)的圖象與x軸一定有兩個交點;
(2)當k =1時,設(shè)該函數(shù)的圖象與x軸的交點為A、B(A在B的左側(cè)),與y軸的交點為C,點P為其圖象的對稱軸上一動點,是否存在點P,使BP+CP最小,若存在,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖①,∠QPN的頂點P在正方形ABCD兩條對角線的交點處,∠QPN=α,將∠QPN繞點P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點E和點F(點F與點C,D不重合).
(1)如圖①,當α=90°時,DE,DF,AD之間滿足的數(shù)量關(guān)系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當α=60°時,(1)中的結(jié)論變?yōu)镈E+DF=AD,請給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點E,其他條件不變,探究在整個運動變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com