【題目】閱讀一段文字,再回答下列問(wèn)題:已知在平面內(nèi)兩點(diǎn)的坐標(biāo)為,則該兩點(diǎn)間距離公式為.同時(shí),當(dāng)兩點(diǎn)在同一坐標(biāo)軸上或所在直線(xiàn)平行于軸、平行于軸時(shí),兩點(diǎn)間的距離公式可化簡(jiǎn)成

1)若已知兩點(diǎn),,試求兩點(diǎn)間的距離;

2)已知點(diǎn)在平行于軸的直線(xiàn)上,點(diǎn)的縱坐標(biāo)為7,點(diǎn)的縱坐標(biāo)為,試求兩點(diǎn)間的距離;

3)已知一個(gè)三角形各頂點(diǎn)的坐標(biāo)為,,,你能判定這三點(diǎn)是否共線(xiàn)?若共線(xiàn)請(qǐng)說(shuō)明理由,若不共線(xiàn)請(qǐng)求出圖形的面積.

【答案】1;(29;(3A,B,C三點(diǎn)不共線(xiàn),△ABC的面積為

【解析】

1)根據(jù)兩點(diǎn)間的距離公式進(jìn)行計(jì)算即可;
2)根據(jù)點(diǎn)MN在平行于y軸的直線(xiàn)上,可以利用兩點(diǎn)間的距離公式進(jìn)行計(jì)算;
3)先求出A、BC三點(diǎn)中,任意兩點(diǎn)之間的距離,可判斷出三點(diǎn)不共線(xiàn),進(jìn)一步可判斷三角形ABC的形狀,從而可求得其面積.

解:(1)∵點(diǎn)A3,3),B-2,-1),
AB=,

A,B兩點(diǎn)間的距離是
2)∵點(diǎn)M,N在平行于y軸的直線(xiàn)上,點(diǎn)M的縱坐標(biāo)為7,點(diǎn)N的縱坐標(biāo)為-2
MN=|-2-7|=9,
MN兩點(diǎn)間的距離是9;
3)這三點(diǎn)不共線(xiàn),該三角形為直角三角形.理由如下:

∵一個(gè)三角形各頂點(diǎn)的坐標(biāo)為

AB=,

AC=

BC=

A,B,C三點(diǎn)不共線(xiàn).

AB2+AC2==BC2,

∴△ABC是直角三角形,
SABC=ABAC=

AB,C三點(diǎn)不共線(xiàn),△ABC的面積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一種用于裝修的人字形梯,合攏時(shí),梯子的長(zhǎng)為米,距調(diào)查,這種梯子在張角為時(shí)最安全.

(1)求梯子最安全時(shí),梯子能達(dá)到的最大高度是多少?(精確到米)

(2)裝修時(shí),房頂距離地面米,一個(gè)人坐在梯子最頂端時(shí),他的手臂能達(dá)到的最大高度比梯子最頂端高出米.要使裝修正常進(jìn)行,那么梯子張角至多為多少度?(精確到度)

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖的轉(zhuǎn)盤(pán)被劃分成六個(gè)相同大小的扇形,并分別標(biāo)上12,3,4,5,6這六個(gè)數(shù)字,指針停在每個(gè)扇形的可能性相等。四位同學(xué)各自發(fā)表了下述見(jiàn)解:

甲:如果指針前三次都停在了3號(hào)扇形,下次就一定不會(huì)停在3號(hào)扇形;

乙:只要指針連續(xù)轉(zhuǎn)六次,一定會(huì)有一次停在6號(hào)扇形;

丙:指針停在奇數(shù)號(hào)扇形的概率與停在偶數(shù)號(hào)扇形的概率相等;

丁:運(yùn)氣好的時(shí)候,只要在轉(zhuǎn)動(dòng)前默默想好讓指針停在6號(hào)扇形,指針停在6號(hào)扇形的可能性就會(huì)加大。

其中,你認(rèn)為正確的見(jiàn)解有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x2+bx+cx軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線(xiàn)BC的解析式為y=﹣x+6.

(1)求拋物線(xiàn)的解析式;

(2)點(diǎn)M為線(xiàn)段BC上方拋物線(xiàn)上的任意一點(diǎn),連接MB,MC,點(diǎn)N為拋物線(xiàn)對(duì)稱(chēng)軸上任意一點(diǎn),當(dāng)M到直線(xiàn)BC的距離最大時(shí),求點(diǎn)M的坐標(biāo)及MN+NB的最小值;

(3)(2)中,點(diǎn)M到直線(xiàn)BC的距離最大時(shí),連接OMBC于點(diǎn)E,將原拋物線(xiàn)沿射線(xiàn)OM平移,平移后的拋物線(xiàn)記為y′,當(dāng)y′經(jīng)過(guò)點(diǎn)M時(shí),它的對(duì)稱(chēng)軸與x軸的交點(diǎn)記為H.將△BOE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°至△BO1E1,再將△BO1E1沿著直線(xiàn)O1H平移,得到△B1O2E2,在平面內(nèi)是否存在點(diǎn)F,使以點(diǎn)C,H,B1,F(xiàn)為頂點(diǎn)的四邊形是以B1H為邊的菱形.若存在,直接寫(xiě)出點(diǎn)B1的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,頂點(diǎn)為D的拋物線(xiàn)y=﹣x2+x+4y軸交于點(diǎn)A,與x軸交于兩點(diǎn)B、C(點(diǎn)B在點(diǎn)C的左邊),點(diǎn)A與點(diǎn)E關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),點(diǎn)B、E在直線(xiàn)y=kx+b(k,b為常數(shù))上.

(1)k,b的值;

(2)點(diǎn)P為直線(xiàn)AE上方拋物線(xiàn)上的任意一點(diǎn),過(guò)點(diǎn)PAE的垂線(xiàn)交AE于點(diǎn)F,點(diǎn)Gy軸上任意一點(diǎn),當(dāng)△PBE的面積最大時(shí),求PF+FG+OG的最小值;

(3)(2)中,當(dāng)PF+FG+OG取得最小值時(shí),將△AFG繞點(diǎn)A按順時(shí)方向旋轉(zhuǎn)30°后得到△AF1G1,過(guò)點(diǎn)G1AE的垂線(xiàn)與AE交于點(diǎn)M.點(diǎn)D向上平移個(gè)單位長(zhǎng)度后能與點(diǎn)N重合,點(diǎn)Q為直線(xiàn)DN上任意一點(diǎn),在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使以S、Q、M、N為頂點(diǎn)且MN為邊的四邊形為菱形?若存在,直接寫(xiě)出點(diǎn)S的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,中,于點(diǎn),于點(diǎn),連接

1)若,,,求的周長(zhǎng);

2)如圖2,若,的角平分線(xiàn)于點(diǎn),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,邊上的一點(diǎn),,交邊于,,

1是等腰三角形嗎?請(qǐng)說(shuō)明理由;

2)連結(jié),當(dāng) 度時(shí),是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格中,每個(gè)小正方形的邊長(zhǎng)都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖.

1)畫(huà)出將△ABC向右平移2個(gè)單位得到△A1B1C1

2)畫(huà)出將△ABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A2B2C2

3)在x軸上找一點(diǎn)P,滿(mǎn)足點(diǎn)P到點(diǎn)C1C2距離之和最小,并求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,B=90°,AB=12mm,BC=24mm,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊ABB2mm/s的速度移動(dòng)(不與點(diǎn)B重合),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BCC4mm/s的速度移動(dòng)(不與點(diǎn)C重合).如果PQ分別從A、B同時(shí)出發(fā),設(shè)運(yùn)動(dòng)的時(shí)間為xs,四邊形APQC的面積為ymm2

(1)yx之間的函數(shù)關(guān)系式;

(2)求自變量x的取值范圍;

(3)四邊形APQC的面積能否等于172mm2.若能,求出運(yùn)動(dòng)的時(shí)間;若不能,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案