精英家教網 > 初中數學 > 題目詳情

【題目】如圖,三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,求△ADE的周長.

【答案】解:∵BC沿BD折疊點C落在AB邊上的點E處,
∴DE=CD,BE=BC,
∵AB=8cm,BC=6cm,
∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,
∴△ADE的周長=AD+DE+AE,
=AD+CD+AE,
=AC+AE,
=5+2,
=7cm.
【解析】根據翻折變換的性質可得DE=CD,BE=BC,然后求出AE,再根據三角形的周長列式求解即可.
【考點精析】根據題目的已知條件,利用翻折變換(折疊問題)的相關知識可以得到問題的答案,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖, 中,點在邊上, , 垂足分別是、,12.

1平行嗎?為什么?

(2)若∠51°,54°,的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了深化課程改革,省實驗積極開展校本課程建設,計劃成立“增量閱讀”、“趣味數學”、“音樂舞蹈”和“戲劇英語”等多個社團,要求每位學生都自主選擇其中一個社團,為此,隨機調查了初中部分學生選擇社團的意向.并將調查結果繪制成如下統(tǒng)計圖表(不完整):

選擇意向

增量閱讀

趣味數學

音樂舞蹈

戲曲英語

其他

所占百分比

a

20%

b

10%

5%


根據統(tǒng)計圖表的信息,解答下列問題:

(l)求本次抽樣調查的學生總人數及a、b的值:

(2)將條形統(tǒng)計圖補充完整;

(3)若該校共有5000名學生,試估計全校選擇“音樂舞蹈”社團的學生人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)如圖1,銳角△ABC中,分別以AB、AC為邊向外作等邊△ABE和等邊△ACD,連接BD,CE,試猜想BD與CE的大小關系,并說明理由.

【深入探究】

(2)如圖2,△ABC中,∠ABC=45°,AB=5cm,BC=3cm,分別以AB、AC為邊向外作正方形ABNE和正方形ACMD,連接BD,求BD的長.

(3)如圖3,在(2)的條件下,以AC為直角邊在線段AC的左側作等腰直角△ACD,求BD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=CD=8,過點B作EB⊥AB,交CD于點E.若DE=6,則AD的長為(

A.6
B.8
C.9
D.10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABE,FDE上,并且AF=CE

1)求證:四邊形ACEF是平行四邊形;

2)當∠B滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】按圖填空,并注明理由.

⑴完成正確的證明:如圖,已知AB∥CD,求證:∠BED=∠B+∠D

證明:過E點作EF∥AB(經過直線外一點有且只有一條直線與這條直線平行)

∴∠1= ( )

∵AB∥CD(已知)

∴EF∥CD(如果兩條直線與同一直線平行,那么它們也平行)

∴∠2= ( )

又∠BED=∠1+∠2

∴∠BED=∠B+∠D (等量代換).

⑵如圖,在△ABC中,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.

解:因為EF∥AD(已知)

所以∠2=∠3.( )

又因為∠1=∠2,所以∠1=∠3.(等量代換)

所以AB∥ ( )

所以∠BAC+ =180°( ).

又因為∠BAC=70°,所以∠AGD=110°.

圖⑴ 圖⑵

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若﹣2amb43a2bn+1是同類項,則m+n的值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知圓的半徑是5cm,如果圓心到直線的距離是4cm,那么直線和圓的位置關系是(  )

A.相離B.相交C.相切D.內含

查看答案和解析>>

同步練習冊答案