精英家教網 > 初中數學 > 題目詳情

如圖,⊙O與⊙O′相交于C、E兩點,CB是⊙O的直徑,切線BA交CE的延長線于A點,且BC=2,,求AB、AE的長.

答案:略
解析:

連結BE,∵CB⊙O的直徑,

∴∠BEC=90°

∵BC=2,

∴BE=1

∵AB⊙O的切線,

∴∠ABC=90°,

∴△ABE∽△BCE

,,


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網某學校要在圍墻旁建一個長方形的中藥材種植實習苗圃,苗圃的一邊靠圍墻(墻的長度不限),另三邊用木欄圍成,建成的苗圃為如圖所示的長方形ABCD.已知木欄總長為120米,設AB邊的長為x米,長方形ABCD的面積為S平方米.
(1)求S與x之間的函數關系式(不要求寫出自變量x的取值范圍).當x為何值時,S取得最值(請指出是最大值還是最小值)?并求出這個最值;
(2)學校計劃將苗圃內藥材種植區(qū)域設計為如圖所示的兩個相外切的等圓,其圓心分別為O1和O2,且O1到AB、BC、AD的距離與O2到CD、BC、AD的距離都相等,并要求在苗圃內藥材種植區(qū)域外四周至少要留夠0.5米寬的平直路面,以方便同學們參觀學習.當(l)中S取得最值時,請問這個設計是否可行?若可行,求出圓的半徑;若不可行,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•茂名)如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2
3
,OA=4,將直線l1繞點A逆時針旋轉30°后得到的直線l2剛好與⊙O相切于點C,則OC=
2
2

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2數學公式,OA=4,將直線l1繞點A逆時針旋轉30°后得到的直線l2剛好與⊙O相切于點C,則OC=________.

查看答案和解析>>

科目:初中數學 來源:2013年廣東省湛江市中考數學模擬試卷(二)(解析版) 題型:填空題

如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉30°后得到的直線l2剛好與⊙O相切于點C,則OC=   

查看答案和解析>>

科目:初中數學 來源:2012年廣東省茂名市中考數學試卷(解析版) 題型:填空題

如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2,OA=4,將直線l1繞點A逆時針旋轉30°后得到的直線l2剛好與⊙O相切于點C,則OC=   

查看答案和解析>>

同步練習冊答案