【題目】如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點(diǎn)P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).點(diǎn)D在線段PQ上,且PD=PC.

(1)求證:PQ∥AB;
(2)若點(diǎn)D在∠BAC的平分線上,求CP的長.

【答案】
(1)證明:∵在Rt△ABC中,AB=15,BC=9,

∴AC= =12,

, ,

∵∠C=∠C,

∴△PQC∽△BAC,

∴∠CPQ=∠B,

∴PQ∥AB;


(2)解:如圖,

連接AD,

∵PQ∥AB,

∴∠ADQ=∠DAB.

∵點(diǎn)D在∠BAC的平分線上,

∴∠DAQ=∠DAB,

∴∠ADQ=∠DAQ,

∴AQ=DQ.

在Rt△CPQ中,PQ=5x,

∵PD=PC=3x,

∴DQ=2x.

∵AQ=12﹣4x,

∴12﹣4x=2x,

解得x=2,

∴CP=3x=6.


【解析】(1)先用勾股定理求出AC,再用兩邊對應(yīng)成比例,夾角相等,兩三角形相似,得出△PQC∽△BAC,從而有∠CPQ=∠B即可;(2)先判斷出AQ=DQ,再用勾股定理AQ,最后建立方程12﹣4x=2x,求解方程即可.
【考點(diǎn)精析】利用相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OP∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.

請你參考這個(gè)作全等三角形的方法,解答下列問題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點(diǎn)F,求∠EFA的度數(shù);

(2)在(1)的條件下,請判斷FEFD之間的數(shù)量關(guān)系,并說明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學(xué)校計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b圖象經(jīng)過點(diǎn)(1,3)和(4,6)

①試求;

②畫出這個(gè)一次函數(shù)圖象

③這個(gè)一次函數(shù)與y軸交點(diǎn)坐標(biāo)是(   

當(dāng)x 時(shí),y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)如表回答下列問題:

x

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

17.0

x2

262.44

265.69

268.96

272.25

275.56

278.89

282.24

285.61

289

(1)275.56的平方根是______ ;

(2)= ______ ;

(3)查看上表, <<

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)莊計(jì)劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù),小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)關(guān)系如圖①所示,小李種植水果所得報(bào)酬z(元)與種植面積n(畝)之間的函數(shù)關(guān)系如圖②所示

(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是元,小張應(yīng)得的工資總額是元,此時(shí),小李種植水果畝,小李應(yīng)得的報(bào)酬是元;
(2)設(shè)農(nóng)莊支付給小張和小李的總費(fèi)用為W(元),當(dāng)10<m<30時(shí),求W與m之間的函數(shù)關(guān)系式,并求出總費(fèi)用最大為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,C點(diǎn)坐標(biāo)為(﹣3,0),A點(diǎn)坐標(biāo)為(﹣8,4),則B點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DEAC,BFAC,若AB=CD,試證明BD平分EF,若將DEC的邊EC沿AC方向移動(dòng)變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)八年級甲、乙、丙三個(gè)班中,每班的學(xué)生人數(shù)都為40名,某次數(shù)學(xué)考試的成績統(tǒng)計(jì)如圖:(每組分?jǐn)?shù)含最小值,不含最大值)

丙班數(shù)學(xué)成績頻數(shù)統(tǒng)計(jì)表

分?jǐn)?shù)

50~60

60~70

70~80

80~90

90~100

人數(shù)

1

4

15

11

9

 根據(jù)上圖及統(tǒng)計(jì)表提供的信息,則80~90分這一組人數(shù)最多的班是________

查看答案和解析>>

同步練習(xí)冊答案