18.先化簡,再求值:
(1)3x2y-[2x2y-(2xyz)-x2z]+4(x2z-xyz),其中,x=-2,y=4,z=2
(2)2(a2b+3ab2)-3(a2b+2ab2-1)-2a2b-2,其中a=-2,b=2.

分析 (1)原式去括號合并得到最簡結果,把x,y,z的值代入計算即可求出值;
(2)原式去括號合并得到最簡結果,把a與b的值代入計算即可求出值.

解答 解:(1)原式=3x2y-2x2y+2xyz+x2z+4x2z-4xyz=x2y-2xyz+5x2z,
當x=-2,y=4,z=2時,原式=16+32+40=88;
(2)原式=2a2b+6ab2-3a2b-6ab2+3-2a2b-2=-3a2b+1,
當a=-2,b=2時,原式=-24+1=-23.

點評 此題考查了整式的加減-化簡求值,熟練掌握運算法則是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

19.如圖,點E,C在線段BF上,且BE=CF,若AB=DE,要使△ABC≌△DEF,還需要添加的一個條件是(  )
A.∠ACB=∠DFEB.∠A=∠DC.AC∥DFD.∠B=∠DEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.如圖,在平面直角坐標系中,已知A、B、C三點的坐標分別為A(-2,0),B(6,0),C(0,-3).
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)過C點作CD平行于x軸交拋物線于點D,寫出D點的坐標,并求AD、BC的交點E的坐標;
(3)若拋物線的頂點為P,連結PC、PD.
①判斷四邊形CEDP的形狀,并說明理由;
②若在拋物線上存在點Q,使直線OQ將四邊形PCED分成面積相等的兩個部分,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.如圖1,正方形ABCD與正方形AEFG的邊AB,AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉中心逆時針旋轉,設旋轉角為α.在旋轉過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE,DG.

(1)當正方形AEFG旋轉至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=3$\sqrt{3}$.
①求BE的長;②求點A到BE的距離;
(3)當點C落在直線BE上時,連接FC,直接寫出∠FCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.在正常情況下,一個人在運動時所能承受的每分鐘心跳的最高次數(shù)S(次/分)與這個人年齡n(歲)滿足關系式:S=an+b,其中a、b均為常數(shù).
(1)根據(jù)圖中提供的信息,求a、b的值;
(2)若一位63歲的人在跑步,醫(yī)生在途中給他測得10秒心跳為26次,問:他是否有危險?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.探索:
(x-1)(x+1)=x2-1         (x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1    (x-1)(x4+x3+x2+x+1)=x5-1

(1)試求26+25+24+23+22+2+1的值;
(2)試猜想22015的個位數(shù)是多少,并說明理由;
(3)判斷22015+22014+22013+22012+…+22+2+1的值的個位數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.如圖,點O、A、B在同一直線上,OC平分∠AOD,OE平分∠FOB,∠COF=∠DOE=90°.
(1)∠COD與∠EOF有什么數(shù)量關系?說明理由.
答:∠COD=∠EOF,
理由如下:∵∠COF=∠DOE,
∴∠COF-∠DOF=∠DOE-∠DOF.
∴結論成立.
(2)∠AOC與∠BOF有什么數(shù)量關系?說明理由.
理由如下:∵OC平分∠AOD,OE平分∠FOB,
∴∠COD=∠AOC,∠BOF=2∠EOF,
∵由(1)得到的∠COD與∠EOF關系.
∴∠AOC與∠BOF的數(shù)量關系為2∠AOC=∠BOF.
(3)求∠AOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

7.一元二次方程x2+3x-5=0的兩根為x1,x2,則x1+x2的值是( 。
A.3B.5C.-3D.-5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.如圖,在等邊三角形ABC中,點M是BC邊上的任意一點(不與端點重合),連接AM,以AM為邊作等邊三角形AMN,連接CN.
(1)求∠ACN的度數(shù).
(2)若點M在△ABC的邊BC的延長線上,其他條件不變,則∠ACN的度數(shù)是否發(fā)生變化?(直接寫出結論即可)

查看答案和解析>>

同步練習冊答案