【題目】解不等式并把它的解集在數(shù)軸上表示出來.
(1)3x-1≥2(x-1)
(2)
(3)
(4)
【答案】(1)x>-1;數(shù)軸表示見解析
(2)x<3;數(shù)軸表示見解析
(3)x<-2;數(shù)軸表示見解析
(4)x≥-1;數(shù)軸表示見解析
【解析】
(1)移項、合并同類項,解得不等式.畫數(shù)軸,表示出解集.
(2)不等式兩邊同時乘以2,不等號不變,再移項.合并同類項,解得不等式.畫數(shù)軸表示出解集.
(3)不等式兩邊同時乘以6,不等號不變,再移項.合并同類項,解得不等式.畫數(shù)軸表示出解集.
(4)不等式兩邊同時乘以6,不等號不變,再移項.合并同類項,解得不等式.畫數(shù)軸表示出解集.
(1)3x-1≥2(x-1)
解:
解集在數(shù)軸在表示如圖:
(2)
解:
解集在數(shù)軸在表示如圖:
(3)
解:
解集在數(shù)軸在表示如圖:
(4)
解:
解集在數(shù)軸在表示如圖:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線分別與軸、軸相交于點和點,點的坐標(biāo)為,點的坐標(biāo)為.
(1)求的值;
(2)若點是第二象限內(nèi)的直線上的一個動點,當(dāng)點運動過程中,試寫出的面積與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)探究:當(dāng)運動到什么位置時,的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點P(m,4)在反比例函數(shù)y=﹣的圖象上,正比例函數(shù)的圖象經(jīng)過點P和點Q(6,n).
(1)求正比例函數(shù)的解析式;
(2)求P、Q兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)了統(tǒng)計知識后,小剛就本班同學(xué)上學(xué)“喜歡的出行方式”進行了一次調(diào)查.圖(1)和圖(2)是他根據(jù)采集的數(shù)據(jù)繪制的兩幅不完整統(tǒng)計圖.請根據(jù)圖中提供的信息解答以下問題:
(1)補全條形統(tǒng)計圖,并計算出“騎車”部分所對應(yīng)的圓心角的度數(shù);
(2)如果全年級共600名同學(xué),請估算全年級步行上學(xué)的學(xué)生人數(shù);
(3)若由3名“喜歡乘車”的學(xué)生,1名“喜歡步行”的學(xué)生,1名“喜歡騎車”的學(xué)生組隊參加一項活動.欲從中選出2人擔(dān)任組長(不分正副),列出所有可能的情況,并求出2人都“喜歡乘車”的學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格中,每個小正方形的邊長都是單位1,△ABC在平面直角坐標(biāo)系中的位置如圖.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1.
(2)畫出△ABC繞點O按逆時針方向旋轉(zhuǎn)90°后的△A2B2C2.
(3)判斷△A1B1C1和△A2B2C2是不是成軸對稱?如果是,請在圖中作出它們的對稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交公司有 A,B 型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
紅星中學(xué)根據(jù)實際情況,計劃租用 A,B 型客車共 5 輛,同時送七年級師生到基地參加社會實踐活動,設(shè)租用 A 型客車 x 輛,根據(jù)要求回答下列問題:
(1)用含 x 的式子填寫下表:
車輛數(shù)(輛) | 載客量 | 租金(元) | |
A | x | ||
B |
(2)若要保證租車費用不超過 1 900 元,求 x 的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC 中,AB=15,AC=13,高 AD=12,則△ABC 的周長是( )
A. 42B. 32C. 42 或 32D. 42 或 37
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點D在AB上,以BD為直徑的⊙O切AC于點E,連接DE并延長,交BC的延長線于點F.
(1)求證:△BDF是等邊三角形;
(2)連接AF、DC,若BC=3,寫出求四邊形AFCD面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作DF⊥AC于點F.
(1)若⊙O的半徑為3,∠CDF=15°,求陰影部分的面積;
(2)求證:DF是⊙O的切線;
(3)求證:∠EDF=∠DAC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com