10.如圖,兩個(gè)三角形為全等三角形,則∠α的度數(shù)是( 。
A.72°B.60°C.58°D.50°

分析 根據(jù)三角形內(nèi)角和定理計(jì)算出∠1的度數(shù),然后再根據(jù)全等三角形的對(duì)應(yīng)角相等可得∠α=∠1=72°.

解答 解:根據(jù)三角形內(nèi)角和可得∠1=180°-50°-58°=72°,
因?yàn)閮蓚(gè)全等三角形,
所以∠α=∠1=72°,
故選A.

點(diǎn)評(píng) 此題主要考查了全等三角形的性質(zhì),關(guān)鍵是掌握全等三角形的對(duì)應(yīng)角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.?dāng)?shù)軸上到A表示為x,B表示為2x-1,線段AB=4,那么x=-3或5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖1,等邊△ABC中,BC=4,點(diǎn)P從點(diǎn)B出發(fā),沿BC方向運(yùn)動(dòng)到點(diǎn)C,點(diǎn)P關(guān)于直線AB、AC的對(duì)稱點(diǎn)分別為點(diǎn)M、N,連接MN.
【發(fā)現(xiàn)】
當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),線段MN的長是4$\sqrt{3}$.
當(dāng)AP的長最小時(shí),線段MN的長是6;
【探究】
如圖2,設(shè)PB=x,MN2=y,連接PM、PN,分別交AB,AC于點(diǎn)D,E.
(1)用含x的代數(shù)式表示PM=$\sqrt{3}$x,PN=$\sqrt{3}$(4-x);
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出y的取值范圍;
(3)當(dāng)點(diǎn)P在直線BC上的什么位置時(shí),線段MN=3$\sqrt{7}$(直接寫出答案)
【拓展】
如圖3,求線段MN的中點(diǎn)K經(jīng)過的路線長.
【應(yīng)用】
如圖4,在等腰△ABC中,∠BAC=30°,AB=AC,BC=2,點(diǎn)P、Q、R分別為邊BC、AB、AC上(均不與端點(diǎn)重合)的動(dòng)點(diǎn),則△PQR周長的最小值是2+$\sqrt{3}$.
(可能用到的數(shù)值:sin75°=$\frac{\sqrt{6}+\sqrt{2}}{4}$,cos75°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,tan75°=2+$\sqrt{3}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,△ABC的面積為1.第一次操作:分別延長AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2017,最少經(jīng)過多少次操作(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.化簡(jiǎn):
①$\sqrt{(-0.3)^{2}}$=0.3;
②$\sqrt{(2-\sqrt{5})^{2}}$=$\sqrt{5}$-2;
③$\sqrt{12}$-$\sqrt{3}$=$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,邊長為2的正方形ABCD的對(duì)角線AC、BD相交于點(diǎn)P,頂點(diǎn)A在x軸正半軸上運(yùn)動(dòng),頂點(diǎn)B在y軸正半軸上運(yùn)動(dòng)(x軸的正半軸、y軸的正半軸都不包含原點(diǎn)O),頂點(diǎn)C,D都在第一象限.
(1)當(dāng)∠BAO=45°時(shí),求點(diǎn)P的坐標(biāo);
(2)求證:無論點(diǎn)A在x軸正半軸上、點(diǎn)B在y軸正半軸上怎樣運(yùn)動(dòng),點(diǎn)P都在∠AOB的平分線上;
(3)設(shè)點(diǎn)P到x軸的距離為n,試確定n的取值范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.在平行四邊形ABCD中,E、F為對(duì)角線BD上的三等分點(diǎn).求證:四邊形AFCE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

20.九年級(jí)某班同學(xué)在畢業(yè)晚會(huì)中進(jìn)行抽獎(jiǎng)活動(dòng),在一個(gè)不透明的口袋中有三個(gè)完全相同的小球,把它們分別標(biāo)號(hào)1、2、3,隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào)后放回?fù)u勻,再從中隨機(jī)摸出一個(gè)小球記下標(biāo)號(hào),規(guī)定當(dāng)兩次摸出的小球標(biāo)號(hào)相同時(shí)中獎(jiǎng),則中獎(jiǎng)的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案