精英家教網 > 初中數學 > 題目詳情
如圖,兩建筑物的水平距離為a米,從A點測得D點的俯角為α,測得C點的俯角為β,則較低建筑物的高為( 。
A.a米B.acotα米
C.acotβ米D.a(tanβ-tanα)米

作DE⊥AB于點E.
在直角△AED中,ED=BC=a,∠ADE=α
∵tan∠ADE=
AE
DE
,
∴AE=DE•tan∠ADE=a•tanα.
同理AB=a•tanβ.
∴DC=BE=AB-AE=a•tanβ-a•tanα=a(tanβ-tanα).
故選D.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:填空題

長為4m的梯子搭在墻上與地面成4g°角,作業(yè)時調整為60°角(如圖所示),則梯子的頂端沿墻面升高了______m.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖是某地下商業(yè)街的入口,數學課外興趣小組的同學打算運用所學的知識測量側面支架的最高點E到地面的距離EF.經測量,支架的立柱BC與地面垂直,即∠BCA=90°,且BC=1.5m,點F、A、C在同一條水平線上,斜桿AB與水平線AC的夾角∠BAC=30°,支撐桿DE⊥AB于點D,該支架的邊BE與AB的夾角∠EBD=60°,又測得AD=1m.請你求出該支架的邊BE及頂端E到地面的距離EF的長度.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

數學老師組織學生實地測量煙囪的高度,他們選擇矩形建筑物ABCD附近進行測量,所帶工具有量距離的皮尺和測仰角、俯角的測角儀.由于障礙不能到達煙囪底部,但可量得AB、BC的長為a、b,以及測角儀的高度為c,在A、B處能看到點E、F,在C處能看到點E.
(1)請你設計一種能求出煙囪高度EF的方案,并畫圖說明.
(2)你所測出的仰角或俯角用字母α、β、γ等表示,請推算出你的設計方案中求EF的計算公式(可含字母a、b、c和α、β、γ的三角函數).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在△ABC中,AB=8,∠ABC=30°,AC=5,則BC=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,初二•一班數學興趣小組為了測量河兩岸建筑物AB和建筑物CD的水平距離AC,他們首先在A點處測得建筑物CD的頂部D點的仰角為25°,然后爬到建筑物AB的頂部B處測得建筑物CD的頂部D點的俯角為15°30′.已知建筑物AB的高度為30米,求兩建筑物的水平距離AC.(精確到0.1米)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

株洲電視塔又叫東方神龍塔,是一座鋼結構帶旅游的多功能綜合電視塔,它是株洲市標志性景觀之一.某校數學興趣小組要測量株洲電視塔的高度,如圖,他們在點C處測得電視塔的最高點A的仰角為45°,再往電視塔的方向前進125m至點D處,測得最高點A的仰角為60°.求該興趣小組測得的株洲電視塔的高度AB.
(注:
3
≈1.7,結果保留整數)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,AD=3,DC=5,AB=4
2
,∠B=45°.動點M從B點出發(fā)沿線段BC以每秒2個單位長度的速度向終點C運動;動點N同時從C點出發(fā)沿線段CD以每秒1個單位長度的速度向終點D運動.設運動的時間為t秒.
(1)求BC的長;
(2)當MNAB時,求t的值;
(3)試探究:t為何值時,△MNC為等腰三角形.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

美麗的東昌湖賦予江北水城以靈性,周邊景點密布.如圖,A、B為湖濱的兩個景點,C為湖心的一個景點,景點B在景點C的正東,從景點A看,景點B在北偏東75°方向,景點C在北偏東30°方向,一游客自景點A駕船以每分鐘20米的速度行駛了10分鐘到達景點C,之后又以同樣的速度駛向景點B,該游客從景點C到景點B需用多長時間?(精確到1分鐘)

查看答案和解析>>

同步練習冊答案