【題目】如圖,等腰ABC中,AB=AC,∠ACB=72°,

1)若BDACD,求∠ABD的度數(shù);

2)若CE平分∠ACB,求證:AE=BC

【答案】154°;(2)見解析

【解析】

1)根據(jù)等腰三角形的性質(zhì)得出∠ABC=∠ACB=72°,然后計算出∠DBC,即可計算∠ABD的度數(shù);

2)根據(jù)角平分線的性質(zhì)計算有關(guān)度數(shù),分別證明AE=EC BC=CE即可.

1等腰△ABC中,AB=AC∠ACB=72°,

∴∠ABC=∠ACB=72°,

∵BD⊥ACD

∴∠DBC=90°-72°=18°,

∴∠ABD=72°-18°=54°;

2等腰△ABC中,AB=AC,∠ACB=72°,

∴∠ABC=∠ACB=72°∠A=36°

∵CE平分∠ACB,

∴∠ACE=∠ECB=36°,

∴∠A=∠ACE

∴AE=EC,∠BEC=72°

∵∠ABC=72°

∴∠ABC=∠BEC,

∴BC=CE

∴AE=BC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y+x的圖象與性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.

(1)函數(shù)y+x的自變量x的取值范圍是   ;

(2)下表是yx的幾組對應(yīng)值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點,根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標(biāo)是(23),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可)   

(5)小明發(fā)現(xiàn),該函數(shù)的圖象關(guān)于點(   ,   )成中心對稱;

該函數(shù)的圖象與一條垂直于x軸的直線無交點,則這條直線為   ;

直線ym與該函數(shù)的圖象無交點,則m的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=(x0)圖象上一點,直線y=kx+b過點A并且與兩坐標(biāo)軸分別交于點B,C,過點AADx軸,垂足為D,連接DC,若△BOC的面積是4,則△DOC的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是高,CE是中線,DG垂直平分CE,連接DE

1)求證:DCBE

2)若∠AEC72°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“首屆中國西部(銀川)房車生活文化節(jié)”期間,某汽車經(jīng)銷商推出A、B、C、D四種型號的小轎車共1000輛進(jìn)行展銷C型號轎車銷售的成交率為50%其它型號轎車的銷售情況繪制在圖1和圖2兩幅尚不完整的統(tǒng)計圖中

(1)參加展銷的D型號轎車有多少輛?

(2)請你將圖2的統(tǒng)計圖補(bǔ)充完整;

(3)通過計算說明,哪一種型號的轎車銷售情況最好?

(4)若對已售出轎車進(jìn)行抽獎,現(xiàn)將已售出A、B、C、D四種型號轎車的發(fā)票(一車一票)放到一起,從中隨機(jī)抽取一張求抽到A型號轎車發(fā)票的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(觀察發(fā)現(xiàn))如圖 1,ABC CDE 都是等邊三角形,且點 B、CE 在一條直線上,連接 BD AE,BD、AE 相交于點 P,則線段 BD AE 的數(shù)量關(guān)系是 BD AE 相交構(gòu)成的銳角的度數(shù)是 .(只要求寫出結(jié)論,不必說明理由)

2)(深入探究 1)如圖 2ABC CDE 都是等邊三角形,連接 BD AE,BDAE 相交于點 P,猜想線段 BD AE 的數(shù)量關(guān)系,以及 BD AE 相交構(gòu)成的銳角的度數(shù). 請說明理由 結(jié)論:

理由:_______________________

3)(深入探究 2)如圖 3,ABC CDE 都是等腰直角三角形,且∠ACB=∠DCE90°,連接 ADBE,Q AD 中點,連接 QC 并延長交 BE K. 求證:QKBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個球,分別為一個紅球和一個綠球;乙盒中裝有三個球,分別為兩個綠球和一個紅球;丙盒中裝有兩個球,分別為一個紅球和一個綠球,從三個盒子中各隨機(jī)取出一個小球

(1)請畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果

(2)請直接寫出事件取出至少一個紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·貴港)如圖所示,正方形OEFG和正方形ABCD是位似圖形,點F的坐標(biāo)

(1,1),點C的坐標(biāo)為(4,2),則這兩個正方形位似中心的坐標(biāo)是 _ ▲

查看答案和解析>>

同步練習(xí)冊答案