【題目】問題提出

1)如圖①,已知線段AB,請以AB為斜邊,在圖中畫出一個直角三角形;

2)如圖②,已知點A是直線l外一點,點B、C均在直線l上,ADlAD=3,∠BAC=60°,求△ABC面積的最小值;

問題解決

3)如圖③,某園林單位要設計把四邊形花園劃分為幾個區(qū)域種植不同花草,在四邊形ABCD中,∠A=45°,∠B=D=90°,CB=CD=6m,點E、F分別為AB、AD上的點,若保持CECF,那么四邊形AECF的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由.

【答案】1)見解析;(2;(3)存在,72m2

【解析】

1)構造輔助圓,利用直徑所對圓周角為直角解決問題即可.
2)作△ABC的外接圓⊙O,連接OAOB,OC,過點OOEBC于點E,根據(jù)垂線段最短得到AO+OE≥AD,從而算出BC的最大值,即可得到結果;
3)分別延長ABDC交于點M,根據(jù)等腰直角三角形的性質求出四邊形ABCD的面積,將△CBE繞點C順時針旋轉135°得到△CDE′,得到A、D、E′三點共線,從而得到當SCEF取得最小值時,S四邊形AECF取得最大值,以E′F為斜邊作等腰RtOE′F,設△CE′F的外接圓半徑為rm,求出r的取值范圍,得到當點OCD上時,E′F最短,從而可以求出四邊形AECF面積的最大值.

解:(1)如圖,RtACB即為所求.

2)如圖,作△ABC的外接圓⊙O,連接OA,OB,OC,過點OOEBC于點E,

則∠BOC=2BACOA=OB=OC,BE=CE=BC

∵∠BAC=60°,

∴∠BOC=120°,∠OBC=OCB=30°

OA=OB=OC=r,

OE=rBC=2BE=r,

AO+OE≥ADAD=3,

r+r≥3,

解得r≥2,

BC=r≥

SABC=BC·AD≥××3=,

∴△ABC面積的最小值為

3)存在;如圖,分別延長AB、DC交于點M,

則△ADM、△CBM均為等腰直角三角形,

CB=CD=6m,

BM=6mCM=m,AD=DM=6+m,

S四邊形ABCD

=SADM-SCBM

=DM2-BC2

=×6+2-×62

=36+m2

將△CBE繞點C順時針旋轉135°得到△CDE′

A、DE′三點共線.

S四邊形AECF=S四邊形ABCDSCBE+SCDF=S四邊形ABCD–SCEF

S四邊形ABCD為定值,

∴當SCEF取得最小值時,S四邊形AECF取得最大值.

∵∠E′CF=135°-90°=45°,

∴以E′F為斜邊作等腰RtOE′F,

則△CE′F的外接圓是以點O為圓心,OF長為半徑的圓,

設△CE′F的外接圓半徑為rm,

E′F=rm

又∵OC+OD≥CD,

r+r≥6,

r≥12-,

當點OCD上時,E′F最短,此時E′F=r=-12m

SCEF最小=×-12×6=-36m2,

S四邊形AECF最大=S四邊形ABCD-SCE’F最小=36+--36=72m2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某小組在一次“在線測試”中做對的題數(shù)分別是10,8,6,9,8,7,8,對于這組數(shù)據(jù),下列判斷中錯誤的是(

A.眾數(shù)是8B.中位數(shù)是8C.平均數(shù)是8D.方差是8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:

根據(jù)圖中提供的信息,解答下列問題:

(1)a= ,b=

(2)該校八年級學生共有600人,則該年級參加足球活動的人數(shù)約 人;

(3)該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,AD平分∠BACBC于點D,點OAB上一點,以O為圓心,AO為半徑的圓經過點D

1)求證:BCO相切;

2)若BDAD,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校根據(jù)課程設置要求,開設了數(shù)學類拓展性課程,為了解學生最喜歡的課程內容,隨機抽取了部分學生進行問卷調查(每人必須且只選中其中一項),并將統(tǒng)計結果繪制成如下統(tǒng)計圖(不完整),請根據(jù)圖中信息回答問題:

1)求m,n的值.

2)補全條形統(tǒng)計圖.

3)該校共有1200名學生,試估計全校最喜歡“數(shù)學史話”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家家電下鄉(xiāng)政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.

1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數(shù)表達式;(不要求寫自變量的取值范圍)

2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?

3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】年新冠肺炎疫情發(fā)生以來,每天測體溫成為一種制度,手持紅外測溫槍成為緊俏商品.某經銷店承諾對所有商品明碼標價,絕不哄抬物價.如下表所示是該店甲、乙兩種手持紅外測溫槍的進價和售價:

商品

價格

進件(元個)

售價(元個)

該店有一批用元購進的甲、乙兩種手持紅外測溫槍庫存,預計全部銷售后可獲毛利潤共元.[毛利潤(售價進價)銷售量]

1)該店庫存的甲、乙兩種手持紅外測溫槍分別為多少個?

2)根據(jù)銷售情況,該店計劃增加甲種手持紅外測溫槍的購進量,減少乙種手持紅外測溫槍的購進量.已知甲種手持紅外測溫槍增加的數(shù)量是乙種手持紅外測溫槍減少的數(shù)量的倍,進貨價不變,而且用于購進這兩種手持紅外測溫槍的總資金不超過元,則該店怎樣進貨,可使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+mxm<0)交x軸于OA兩點,頂點為點B

1)求△AOB的面積(用含m的代數(shù)式表示);

2)直線y=kx+bk0)過點B,且與拋物線交于另一點D(點D與點A不重合),交y軸于點C.過點CCEABx軸于點E

(。 若∠OBA=90°2<<3,求k的取值范圍;

(ⅱ) 求證:DEy軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,∠A=90°

1)請用圓規(guī)和直尺作出⊙P,使圓心PAC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);

2)在(1)的條件下,若∠B=45°,AB=1PBC于點D,求劣弧的長.

查看答案和解析>>

同步練習冊答案