如圖,已知二次函數(shù) =,當(dāng)<<時(shí), 隨的增大而增大,則實(shí)數(shù)a的取值范圍是 ( )
A.> | B.<≤ | C.>0 | D.<< |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
青海新聞網(wǎng)訊:西寧市為加大向國(guó)家環(huán)境保護(hù)模范城市大步邁進(jìn)的步伐,積極推進(jìn)城市綠地、主題公園、休閑場(chǎng)地建設(shè).園林局利用甲種花卉和乙種花卉搭配成A、B兩種園藝造型擺放在夏都大道兩側(cè).搭配數(shù)量如下表所示:
| 甲種花卉(盆) | 乙種花卉(盆) |
A種園藝造型(個(gè)) | 盆 | 盆 |
B種園藝造型(個(gè)) | 盆 | 盆 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸,y軸相交于A,B兩點(diǎn),OA,OB的長(zhǎng)分別是方程x2﹣14x+48=0的兩根,且OA<OB.
(1)求點(diǎn)A,B的坐標(biāo).
(2)過(guò)點(diǎn)A作直線AC交y軸于點(diǎn)C,∠1是直線AC與x軸相交所成的銳角,sin∠1=,點(diǎn)D在線段CA的延長(zhǎng)線上,且AD=AB,若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)D,求k的值.
(3)在(2)的條件下,點(diǎn)M在射線AD上,平面內(nèi)是否存在點(diǎn)N,使以A,B,M,N為頂點(diǎn)的四邊形是鄰邊之比為1:2的矩形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直線與軸、軸分別交于點(diǎn),與雙曲線分別交于點(diǎn),且點(diǎn)的坐標(biāo)為.
(1)分別求出直線及雙曲線的解析式;
(2)求出點(diǎn)的坐標(biāo);
(3)利用圖象直接寫(xiě)出:當(dāng)在什么范圍內(nèi)取值時(shí),>.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知雙曲線經(jīng)過(guò)點(diǎn)D(6,1),點(diǎn)C是雙曲線第三象限分支上的動(dòng)點(diǎn),過(guò)C作CA⊥x軸,過(guò)D作DB⊥y軸,垂足分別為A,B,連接AB,BC.
(1)求k的值;
(2)若△BCD的面積為12,求直線CD的解析式;
(3)判斷AB與CD的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
已知二次函數(shù)y=-x2+2bx+c,當(dāng)x>1時(shí),y的值隨x值的增大而減小,則實(shí)數(shù)b的取值范圍是( 。
A.b≥-1 | B.b≤-1 | C.b≥1 | D.b≤1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,在矩形ABCD中,AB=2cm,BC=4cm,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別從B,C兩點(diǎn)同時(shí)出發(fā),以1cm/s的速度分別沿B→C,C→D運(yùn)動(dòng),點(diǎn)F運(yùn)動(dòng)到點(diǎn)D時(shí)停止,點(diǎn)E運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為t(單位:s),△OEF的面積為S(單位:cm2),則S與t的函數(shù)關(guān)系可用圖象表示為( 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
數(shù)形結(jié)合是數(shù)學(xué)中常用的思想方法,試運(yùn)用這一思想方法確定函數(shù)y=x2+1與y=的交點(diǎn)的橫坐標(biāo)x0的取值范圍是( 。
A.0<x0<1 |
B.1<x0<2 |
C.2<x0<3 |
D.﹣1<x0<0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com