【題目】如圖,將矩形紙片ABCD(如圖①)按如下步驟操作:(1)以過點A的直線為折痕折疊紙片,使點B恰好落在AD邊上,折痕與BC邊交于點E(如圖②);(2)以過點E的直線為折痕折疊紙片,使點A落在BC邊上,折痕EF交AD邊于點F(如圖③);(3)將紙片展平,那么∠AFE的度數(shù)為_________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y =ax+b的圖像與反比例函數(shù)y =的圖像交于A(4,﹣2)、B(﹣2,m)兩點,與x軸交于點C.
(1)求a,m的值;
(2)請直接寫出不等式ax+b≥的解集;
(3)點P在反比例函數(shù)圖像上,且點P的橫坐標(biāo)為-4,在平面直角坐標(biāo)系中是否存在一點Q,使得以A、B、P、Q為頂點的四邊形為平行四邊形?如果存在,請直接寫出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將A,B兩點向右平移1個單位,再向上平移2個單位,分別得到點A,B的對應(yīng)點C,D,連接AC,BD,CD.
(1)求點C,D的坐標(biāo);
(2)若點P在直線BD上運動,連接PC,PO.
①若點P在線段BD上(不與B,D重合)時,求S△CDP+S△BOP的取值范圍;
②若點P在直線BD上運動,試探索∠CPO,∠DCP,∠BOP的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級共有800名學(xué)生,準(zhǔn)備調(diào)查他們對“低碳”知識的了解程度.
(1)在確定調(diào)查方式時,團(tuán)委設(shè)計了以下三種方案:
方案一:調(diào)查八年級部分女生;
方案二:調(diào)查八年級部分男生;
方案三:到八年級每個班去隨機(jī)調(diào)查一定數(shù)量的學(xué)生.
請問其中最具有代表性的一個方案是_____;
(2)團(tuán)委采用了最具有代表性的調(diào)查方案,并用收集到的數(shù)據(jù)繪制出兩幅不完整的統(tǒng)計圖(如圖①、圖②所示),請你根據(jù)圖中信息,將兩個統(tǒng)計圖補(bǔ)充完整;
(3)請你估計該校八年級約有多少名學(xué)生比較了解“低碳”知識.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的布袋里裝有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個小球,記下數(shù)字為x,小紅在剩下的3個小球中隨機(jī)取出一個小球,記下數(shù)字為y
(1)計算由x、y確定的點(x,y)在函數(shù)y=﹣x+5的圖象上的概率.
(2)小明和小紅約定做一個游戲,其規(guī)則為:若x、y滿足xy>6,則小明勝;若x、y滿足xy<6,則小紅勝,這個游戲公平嗎?請說明理由;若不公平,請寫出公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜邊在x軸上、斜邊長分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點坐標(biāo)分別為A1(2,0),A2(1,-1),A3(0,0),則依圖中所示規(guī)律,A2017的橫坐標(biāo)為( )
A. 1010 B. 2 C. 1 D. ﹣1006
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道(a﹣b)2≥0,即a2﹣2ab+b2≥0.所以a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時取等號).
閱讀1:若a、b為實數(shù),且a>0,b>0.
∵()2≥0,∴a﹣2+b≥0,∴a+b≥2(當(dāng)且僅當(dāng)a=b時取等號).
閱讀2:若函數(shù)y=x(m>0,x>0,m為常數(shù)).由閱讀1結(jié)論可知:x即x∴當(dāng)x即x2=m,∴x=(m>0)時,函數(shù)y=x的最小值為2.
閱讀理解上述內(nèi)容,解答下列問題:
問題1:當(dāng)x>0時,的最小值為 ;當(dāng)x<0時,的最大值為 .
問題2:函數(shù)y=a+(a>1)的最小值為 .
問題3:求代數(shù)式(m>﹣2)的最小值,并求出此時的m的值.
問題4:如圖,四邊形ABCD的對角線AC,BD相交于點O,△AOB、△COD的面積分別為4和16,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.(1)判斷直線CD和⊙O的位置關(guān)系,并說明理由.
(2)過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求∠BEC的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com